Fabrication of Ag@Cr Core-Shell Nano Composites for NO2 Gas Sensing Application

Main Article Content

Zahraa A. Muqbil Muqbil
Ashwaq T. Dahham

Abstract

In this work, Ag and Ag@Cr nanoparticles were fabricated utilizing the plasma jet and chemical spray deposition approach to produce thin films of Ag and Ag@Cr. The optimal gas-detecting properties can be achieved by varying the ratios of Ag@Cr (4:6, 2:8, 3:7) ml and 10 ml Ag. XRD, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterize the Ag and Ag@Cr thin films. Additionally, an absorption peak appears at 422 nm for Ag, and the absorption peaks for Ag@Cr are at 408, 413, and 410 nm, with a polycrystalline character as seen from the XRD pattern. The gas NO₂ was used to check how sensitive, responsive, and quickly recoverable the Ag and Ag@Cr nanocomposite thin films are. According to the findings, at 150 °C, the optimal Ag@Cr ratio was 3:7 with 26% sensitivity. At 150 °C, pure silver's sensitivity was 32%, and it was concluded that chromium has low sensitivity. The results of the Hall effect test indicated that the material is p-type at all ratios.

Received: Jul. 10, 2024 Revised:  Nov. 09,2024 Accepted:Nov.11, 2024  

Article Details

Section

Articles

How to Cite

1.
Muqbil ZAM, T. Dahham A. Fabrication of Ag@Cr Core-Shell Nano Composites for NO2 Gas Sensing Application. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jun. 25];23(2):45-53. Available from: https://www.ijp.uobaghdad.edu.iq/index.php/physics/article/view/1343

References

1. S. Genc, Z. Zadeoglulari, S. H. Fuss, and K. Genc, J. Toxicol. 2012, 782462 (2012). DOI: 10.1155/2012/782462.

2. J. Brunet, V. P. Garcia, A. Pauly, C. Varenne, and B. Lauron, Sens. Actuat. B Chem. 134, 632 (2008). DOI: 10.1016/j.snb.2008.06.010.

3. K. Victorin, Mutat. Res./Rev. Gen. Toxicol. 317, 43 (1994). DOI: 10.1016/0165-1110(94)90011-6.

4. J. A. Bernstein, N. Alexis, C. Barnes, I. L. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S. M. Tarlo, P. B. Williams, and J. A. Bernstein, J. Aller. Clin. Immun. 114, 1116 (2004). DOI: 10.1016/j.jaci.2004.08.030.

5. G. Bhanjana, G. R. Chaudhary, N. Dilbaghi, M. Chauhan, K.-H. Kim, and S. Kumar, Electrochim. Acta 293, 283 (2019). DOI: 10.1016/j.electacta.2018.10.042.

6. B. J. Murray, Q. Li, J. T. Newberg, J. C. Hemminger, and R. M. Penner, Chem. Mat. 17, 6611 (2005). DOI: 10.1021/cm051647r.

7. S. H. Lee and B.-H. Jun, Int. J. Mol. Sci. 20, 865 (2019). DOI: 10.3390/ijms20040865.

8. A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, and S. Boujday, Biosensors 9, 78 (2019). DOI: 10.3390/bios9020078.

9. H. K. Mohaisen, J. Haji, A. M. Oda, H. A. Jabr, and M. A. Maithem, J. Adv. Res. Dyn. Cont. Syst. 12, 228 (2020). DOI: 10.5373/JARDCS/V12I4/20201437.

10. M. Costa and C. B. Klein, Crit. Rev. Toxicol. 36, 155 (2006). DOI: 10.1080/10408440500534032.

11. H. Jing, N. Large, Q. Zhang, and H. Wang, J. Phys. Chem. C 118, 19948 (2014). DOI: 10.1021/jp5064116.

12. J. Xiong, Z. Li, J. Chen, S. Zhang, L. Wang, and S. Dou, ACS Appl. Mat. Interf. 6, 15716 (2014). DOI: 10.1021/am502516s.

13. N. K. Abdalameer, S. N. Mazhir, and K. A. Aadim, Ener. Rep. 6, 447 (2020). DOI: 10.1016/j.egyr.2020.09.023.

14. B. Ding, M. Wang, J. Yu, and G. Sun Gas Sensors Based on Electrospun Nanofibers. Sensors, 2009. 9, 1609 DOI: |.

15. S. Chopra, K. Mcguire, N. Gothard, A. M. Rao, and A. Pham, Appl. Phys. Lett. 83, 2280 (2003). DOI: 10.1063/1.1610251.

16. A. J. R. Muhammed, M.Sc Thesis, University of Baghdad, 2021.

17. P. Rai, S. M. Majhi, Y.-T. Yu, and J.-H. Lee, RSC Adv. 5, 17653 (2015). DOI: 10.1039/C4RA13971B.

18. R. A. Mohammed, G. M. Saleh, and F. A. Mutlak, Iraqi J. Nat. Sci. Nanotech. 3, 44 (2022). DOI: 10.47758/ijn.vi3.53.

19. C. Chairanit, R. Patramanon, N. Phukkaphan, and T. Kerdcharoen, 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI CON) (Pattaya, Thailand 2019). p. 226.

20. X. Liu, X. Sun, X. Duan, C. Zhang, K. Zhao, and X. Xu, Sens. Actuat. B Chem. 305, 127450 (2020). DOI: 10.1016/j.snb.2019.127450.

21. M. S. Mohammed, B. H. Adil, A. S. Obaid, and A. M. Al-Shammari, Mat. Sci. For. 1050, 51 (2022). DOI: 10.4028/www.scientific.net/MSF.1050.51.

22. A. S. Mulekar, A. Themdeo, A. Kalambe, and S. Pande, AIP Conf. Proc. 2104, 030019 (2019). DOI: 10.1063/1.5100446.

23. T. Çayır Taşdemirci, Opt. Quant. Elect. 51, 245 (2019). DOI: 10.1007/s11082-019-1963-0.

24. J. N. Silva, J. Saade, P. M. A. Farias, and E. H. L. Falc?O, Adv. Nanopar. 2, 6 (2013). DOI: 10.4236/anp.2013.23030.

25. K. R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, M. Shkir, and S. Alfaify, Superlatt. Microstruct. 143, 106547 (2020). DOI: 10.1016/j.spmi.2020.106547.

26. H. J. Akber, I. M. Ibrahim, and K. H. Razeg, J. Phys.: Conf. Ser. 1664, 012017 (2020). DOI: 10.1088/1742-6596/1664/1/012017.

27. M. I. Hasan, N. A. Bakr, and I. M. Ibrahim, J. Electron. Mater. 50, 2940 (2021). DOI: 10.1007/s11664-021-08839-2.

28. S. R. Gawali, V. L. Patil, V. G. Deonikar, S. S. Patil, D. R. Patil, P. S. Patil, and J. Pant, J. Phys. Chem. Sol. 114, 28 (2018). DOI: 10.1016/j.jpcs.2017.11.005.

Similar Articles

You may also start an advanced similarity search for this article.