Fabrication of Ag@Cr Core-Shell Nano Composites for NO2 Gas Sensing Application
Main Article Content
Abstract
In this work, Ag and Ag@Cr nanoparticles were fabricated utilizing the plasma jet and chemical spray deposition approach to produce thin films of Ag and Ag@Cr. The optimal gas-detecting properties can be achieved by varying the ratios of Ag@Cr (4:6, 2:8, 3:7) ml and 10 ml Ag. XRD, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterize the Ag and Ag@Cr thin films. Additionally, an absorption peak appears at 422 nm for Ag, and the absorption peaks for Ag@Cr are at 408, 413, and 410 nm, with a polycrystalline character as seen from the XRD pattern. The gas NO₂ was used to check how sensitive, responsive, and quickly recoverable the Ag and Ag@Cr nanocomposite thin films are. According to the findings, at 150 °C, the optimal Ag@Cr ratio was 3:7 with 26% sensitivity. At 150 °C, pure silver's sensitivity was 32%, and it was concluded that chromium has low sensitivity. The results of the Hall effect test indicated that the material is p-type at all ratios.
Article Details
Issue
Section

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 The Author(s). Published by College of Science, University of Baghdad. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License.
How to Cite
References
1. S. Genc, Z. Zadeoglulari, S. H. Fuss, and K. Genc, J. Toxicol. 2012, 782462 (2012). DOI: 10.1155/2012/782462.
2. J. Brunet, V. P. Garcia, A. Pauly, C. Varenne, and B. Lauron, Sens. Actuat. B Chem. 134, 632 (2008). DOI: 10.1016/j.snb.2008.06.010.
3. K. Victorin, Mutat. Res./Rev. Gen. Toxicol. 317, 43 (1994). DOI: 10.1016/0165-1110(94)90011-6.
4. J. A. Bernstein, N. Alexis, C. Barnes, I. L. Bernstein, A. Nel, D. Peden, D. Diaz-Sanchez, S. M. Tarlo, P. B. Williams, and J. A. Bernstein, J. Aller. Clin. Immun. 114, 1116 (2004). DOI: 10.1016/j.jaci.2004.08.030.
5. G. Bhanjana, G. R. Chaudhary, N. Dilbaghi, M. Chauhan, K.-H. Kim, and S. Kumar, Electrochim. Acta 293, 283 (2019). DOI: 10.1016/j.electacta.2018.10.042.
6. B. J. Murray, Q. Li, J. T. Newberg, J. C. Hemminger, and R. M. Penner, Chem. Mat. 17, 6611 (2005). DOI: 10.1021/cm051647r.
7. S. H. Lee and B.-H. Jun, Int. J. Mol. Sci. 20, 865 (2019). DOI: 10.3390/ijms20040865.
8. A. Loiseau, V. Asila, G. Boitel-Aullen, M. Lam, M. Salmain, and S. Boujday, Biosensors 9, 78 (2019). DOI: 10.3390/bios9020078.
9. H. K. Mohaisen, J. Haji, A. M. Oda, H. A. Jabr, and M. A. Maithem, J. Adv. Res. Dyn. Cont. Syst. 12, 228 (2020). DOI: 10.5373/JARDCS/V12I4/20201437.
10. M. Costa and C. B. Klein, Crit. Rev. Toxicol. 36, 155 (2006). DOI: 10.1080/10408440500534032.
11. H. Jing, N. Large, Q. Zhang, and H. Wang, J. Phys. Chem. C 118, 19948 (2014). DOI: 10.1021/jp5064116.
12. J. Xiong, Z. Li, J. Chen, S. Zhang, L. Wang, and S. Dou, ACS Appl. Mat. Interf. 6, 15716 (2014). DOI: 10.1021/am502516s.
13. N. K. Abdalameer, S. N. Mazhir, and K. A. Aadim, Ener. Rep. 6, 447 (2020). DOI: 10.1016/j.egyr.2020.09.023.
14. B. Ding, M. Wang, J. Yu, and G. Sun Gas Sensors Based on Electrospun Nanofibers. Sensors, 2009. 9, 1609 DOI: |.
15. S. Chopra, K. Mcguire, N. Gothard, A. M. Rao, and A. Pham, Appl. Phys. Lett. 83, 2280 (2003). DOI: 10.1063/1.1610251.
16. A. J. R. Muhammed, M.Sc Thesis, University of Baghdad, 2021.
17. P. Rai, S. M. Majhi, Y.-T. Yu, and J.-H. Lee, RSC Adv. 5, 17653 (2015). DOI: 10.1039/C4RA13971B.
18. R. A. Mohammed, G. M. Saleh, and F. A. Mutlak, Iraqi J. Nat. Sci. Nanotech. 3, 44 (2022). DOI: 10.47758/ijn.vi3.53.
19. C. Chairanit, R. Patramanon, N. Phukkaphan, and T. Kerdcharoen, 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI CON) (Pattaya, Thailand 2019). p. 226.
20. X. Liu, X. Sun, X. Duan, C. Zhang, K. Zhao, and X. Xu, Sens. Actuat. B Chem. 305, 127450 (2020). DOI: 10.1016/j.snb.2019.127450.
21. M. S. Mohammed, B. H. Adil, A. S. Obaid, and A. M. Al-Shammari, Mat. Sci. For. 1050, 51 (2022). DOI: 10.4028/www.scientific.net/MSF.1050.51.
22. A. S. Mulekar, A. Themdeo, A. Kalambe, and S. Pande, AIP Conf. Proc. 2104, 030019 (2019). DOI: 10.1063/1.5100446.
23. T. Çayır Taşdemirci, Opt. Quant. Elect. 51, 245 (2019). DOI: 10.1007/s11082-019-1963-0.
24. J. N. Silva, J. Saade, P. M. A. Farias, and E. H. L. Falc?O, Adv. Nanopar. 2, 6 (2013). DOI: 10.4236/anp.2013.23030.
25. K. R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, M. Shkir, and S. Alfaify, Superlatt. Microstruct. 143, 106547 (2020). DOI: 10.1016/j.spmi.2020.106547.
26. H. J. Akber, I. M. Ibrahim, and K. H. Razeg, J. Phys.: Conf. Ser. 1664, 012017 (2020). DOI: 10.1088/1742-6596/1664/1/012017.
27. M. I. Hasan, N. A. Bakr, and I. M. Ibrahim, J. Electron. Mater. 50, 2940 (2021). DOI: 10.1007/s11664-021-08839-2.
28. S. R. Gawali, V. L. Patil, V. G. Deonikar, S. S. Patil, D. R. Patil, P. S. Patil, and J. Pant, J. Phys. Chem. Sol. 114, 28 (2018). DOI: 10.1016/j.jpcs.2017.11.005.