Influence of Using Different Preparation Methods on the Properties of ZnO Nanoparticles

Main Article Content

Athraa Hadi
https://orcid.org/0009-0009-8326-3888
Nada K. Abbas
https://orcid.org/0000-0001-8573-4174

Abstract

Zinc oxide nanoparticles (ZnO NPs) were created using two different preparation methods: chemical precipitation and the green method using the leaves of Ficus carica extract. The nanoparticles were examined using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDX). Analytical techniques such as XRD were applied to verify the crystallinity of ZnO NPs as well as used to calculate the crystal size for the prepared samples. The XRD pattern exhibited a hexagonal structure, and the mean diameter of the crystal size for ZnO NPs prepared by chemical precipitation was 27.44 and 33nm for ZnO NPs prepared by the biological method. Nanoparticles of ZnO have a spherical shape, as examined by FE-SEM. The EDX test indicated the existence of peaks corresponding to zinc and oxygen. The surface properties, such as root mean square roughness (Rq) and average roughness (Ra) were examined by atomic force microscopy (AFM), where Rq and Ra were 35.8 and 29.3 nm, respectively. The ZnO NPs made using chemical precipitation and biological methods were studied with UV-visible spectroscopy (UV-Vis) to look at the absorption spectra, and it was found that the absorption spectrum increased with the green method.

Received: Jul. 07,2024 Revised:  Oct. 22, 2024 Accepted:Nov.06, 2024

Article Details

Section

Articles

How to Cite

1.
Hadi A, Abbas N. Influence of Using Different Preparation Methods on the Properties of ZnO Nanoparticles. IJP [Internet]. 2025 Jun. 1 [cited 2025 Jun. 25];23(2):54-63. Available from: https://www.ijp.uobaghdad.edu.iq/index.php/physics/article/view/1335

References

1. M. Nasrollahzadeh, S. M. Sajadi, M. Sajjadi, Z. Issaabadi, and M. Atarod, Interface Science and Technology (UK, Elsevier, 2019), p.1.

2. L. A. Kolahalam, I. V. Kasi Viswanath, B. S. Diwakar, B. Govindh, V. Reddy, and Y. L. N. Murthy, Mat. Today Proce. 18, 2182 (2019). DOI: 10.1016/j.matpr.2019.07.371.

3. A. Puri, P. Mohite, S. Maitra, V. Subramaniyan, V. Kumarasamy, D. E. Uti, A. A. Sayed, F. M. El-Demerdash, M. Algahtani, A. F. El-Kott, A. A. Shati, M. Albaik, M. M. Abdel-Daim, and I. J. Atangwho, Biomed. Pharmacoth. 170, 116083 (2024). DOI: 10.1016/j.biopha.2023.116083.

4. S. Malik, K. Muhammad, and Y. Waheed, Molecules 28, 661 (2023). DOI: 10.3390/molecules28020661.

5. U. O. Aigbe and O. A. Osibote, J. Hazard. Mat. Adv. 13, 100401 (2024). DOI: 10.1016/j.hazadv.2024.100401.

6. Y. Yoon, P. L. Truong, D. Lee, and S. H. Ko, ACS Nanosci. Au 2, 64 (2022). DOI: 10.1021/acsnanoscienceau.1c00029.

7. N. K. Abbas, A. F. Abdulameer, R. M. Ali, and S. M. Alwash, Silicon 11, 843 (2019). DOI: 10.1007/s12633-018-9874-4.

8. T. M. Abdelghany, A. M. H. Al-Rajhi, R. Yahya, M. M. Bakri, M. A. Al Abboud, R. Yahya, H. Qanash, A. S. Bazaid, and S. S. Salem, Biomass Conv. Bioref. 13, 417 (2023). DOI: 10.1007/s13399-022-03412-1.

9. M. K. Y. Soliman, M. Abu-Elghait, S. S. Salem, and M. S. Azab, Biomass Conv. Bioref. 14, 28253 (2024). DOI: 10.1007/s13399-022-03507-9.

10. S. S. Salem, BioNanoSci. 12, 1220 (2022). DOI: 10.1007/s12668-022-01026-5.

11. A. M. Shehabeldine, S. S. Salem, O. M. Ali, K. A. Abd-Elsalam, F. M. Elkady, and A. H. Hashem, J. Fungi 8, 612 (2022). DOI: 10.3390/jof8060612.

12. A. Fouda, K. S. Alshallash, M. I. Alghonaim, A. M. Eid, A. M. Alemam, M. A. Awad, and M. F. Hamza, Chemistry 5, 2009 (2023). DOI: 10.3390/chemistry5030136.

13. W. Ahmad and D. Kalra, J. King Saud Univ. Sci. 32, 2358 (2020). DOI: 10.1016/j.jksus.2020.03.014.

14. Z. L. Wang, Mat. Today 7, 26 (2004). DOI: 10.1016/S1369-7021(04)00286-X.

15. D. H. Zhang, Z. Y. Xue, and Q. P. Wang, J. Phys. D: Appl. Phys. 35, 2837 (2002). DOI: 10.1088/0022-3727/35/21/321.

16. W. J. E. Beek, M. M. Wienk, and R. a. J. Janssen, Adv. Mat. 16, 1009 (2004). DOI: 10.1002/adma.200306659.

17. A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, Int. J. Nanomed. 7, 6003 (2012). DOI: 10.2147/IJN.S35347.

18. U. Manzoor, S. Siddique, R. Ahmed, Z. Noreen, H. Bokhari, and I. Ahmad, PLOS ONE 11, e0154704 (2016). DOI: 10.1371/journal.pone.0154704.

19. X. Zhang, S. Yan, R. D. Tyagi, and R. Y. Surampalli, Chemosphere 82, 489 (2011). DOI: 10.1016/j.chemosphere.2010.10.023.

20. H. Bahrulolum, S. Nooraei, N. Javanshir, H. Tarrahimofrad, V. S. Mirbagheri, A. J. Easton, and G. Ahmadian, J. Nanobiotech. 19, 86 (2021). DOI: 10.1186/s12951-021-00834-3.

21. K. Saravanakumar, R. Chelliah, S. Shanmugam, N. B. Varukattu, D.-H. Oh, K. Kathiresan, and M.-H. Wang, J. Photochem. Photobio. B Bio. 185, 126 (2018). DOI: 10.1016/j.jphotobiol.2018.05.032.

22. N. Y. Stozhko, M. A. Bukharinova, E. I. Khamzina, A. V. Tarasov, M. B. Vidrevich, and K. Z. Brainina, Nanomaterials 9, (2019). DOI: 10.3390/nano9121655.

23. H. R. Ghorbani, F. P. Mehr, H. Pazoki, and B. M. Rahmani, Orient. J. Chem. 31, 1219 (2015). DOI: 10.13005/ojc/310281.

24. N. K. A. Abbas and D. S. Shaker, Baghdad Sci. J. 21, 3543 (2024). DOI: 10.21123/bsj.2024.8283.

25. K. Steffy, G. Shanthi, A. S. Maroky, and S. Selvakumar, J. Adv. Res. 9, 69 (2018). DOI: 10.1016/j.jare.2017.11.001.

26. G. Vijayaprasath, R. Murugan, S. Asaithambi, P. Sakthivel, T. Mahalingam, Y. Hayakawa, and G. Ravi, Ceram. Int. 42, 2836 (2016). DOI: 10.1016/j.ceramint.2015.11.019.

27. B. Mullamuri, H. Maseed, S. S. Majety, and B. Chandu, Biointer. Res. Appl. Chem. 11, 12547 (2021). DOI: 10.33263/BRIAC115.1254712559

28. N. K. Abass, Z. J. Shanan, T. H. Mohammed, and L. K. Abbas, Baghdad Sci. J. 15, 0198 (2018). DOI: 10.21123/bsj.2018.15.2.0198.

29. S. El-Nahas, M. S. A. El-Sadek, H. M. Salman, and M. M. Elkady, Mat. Chem. Phys. 258, 123885 (2021). DOI: 10.1016/j.matchemphys.2020.123885.

30. C. A. Soto-Robles, P. A. Luque, C. M. Gómez-Gutiérrez, O. Nava, A. R. Vilchis-Nestor, E. Lugo-Medina, R. Ranjithkumar, and A. Castro-Beltrán, Res. Phys. 15, 102807 (2019). DOI: 10.1016/j.rinp.2019.102807.

31. S. Patra, P. Mitra, and S. K. Pradhan, Mat. Res. Bullet. 14, 17 (2011). DOI: 10.1590/S1516-14392011005000015.

32. B. Shirdel and M. A. Behnajady, Optik 147, 143 (2017). DOI: 10.1016/j.ijleo.2017.08.059.

33. A. A. Al-Luhaibi and R. K. Sendi, J. Rad. Res. Appl. Sci. 15, 238 (2022). DOI: 10.1016/j.jrras.2022.07.008.

34. G. Dutta and A. Sugumaran, J. Drug Deliv. Sci. Tech. 66, 102853 (2021). DOI: 10.1016/j.jddst.2021.102853.

35. D. Ayodhya and G. Veerabhadram, Mat. Sci. Eng. B 225, 33 (2017). DOI: 10.1016/j.mseb.2017.08.008.

36. S. A. Muhammed and N. K. Abbas, Baghdad Sci. J. 20, 2002 (2023). DOI: 10.21123/bsj.2023.7292.

37. M. J. Haque, M. M. Bellah, M. R. Hassan, and S. Rahman, Nano Ex. 1, 010007 (2020). DOI: 10.1088/2632-959X/ab7a43.

Similar Articles

You may also start an advanced similarity search for this article.