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Abstract Keywords
The fluctuation properties of energy spectrum, electromagnetic Chaos in nuclei,

transition intensities and electromagnetic moments in ***Xe nucleus Shell model
are investigated with realistic shell model calculations. We find that = calculations

the spectral fluctuations of '*Xe are consistent with the Gaussian

orthogonal ensemble of random matrices. Besides, we observe a

transition from an order to chaos when the excitation energy is

increased and a clear quantum signature of the breaking of chaoticity

when the single-particle energies are increased. The distributions of

the transition intensities and of the electromagnetic moments are

well described by a Porter-Thomas distribution. The statistics of

electromagnetic transition intensities clearly deviate from a Porter- Article info

Thomas distribution (i.e., a transition towards regularity is observed) Received: Mar. 2010
. . . . .. Accepted: Apr. 2010

when the single-particle energies are increased whereas the statisticS  pypjished: Oct. 2010

of electromagnetic moments are not affected by the change of the

single-particle energies.
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Introduction

Quantum chaos has been studied
intensely during the last three decades [1].
Bohigas et al. [2] proposed a connection
between chaos in a classical system and the
spectral fluctuations of the analogous
quantum system, where an analytical proof
of the Bohigas et al. conjecture has been
presented in [3]. It is now generally accepted
that quantum analogs of most classically
chaotic systems show spectral fluctuations
that agree with the random matrix theory
(RMT) [4,5] while quantum analogs of
classically regular systems show spectral
fluctuations that agree with a Poisson
distribution.  For  time-reversal-invariant
systems, the appropriate form of RMT is the
Gaussian orthogonal ensemble (GOE). RMT
was originally employed to describe the
statistical fluctuations of neutron resonances
in compound nuclei [6]. It has become a
standard tool for analyzing the universal
statistical fluctuations in chaotic systems [7-
10].

The chaotic nature of the single particle
dynamics in the nucleus can be studied in
terms of the mean field approximation.
However, the nuclear residual interaction
mixes different mean field configurations
and affects the statistical fluctuations of the
many particle spectrum and wave functions.
These fluctuations can be studied via various
nuclear structure models. The statistics of
the low-lying collective part of the nuclear
spectrum have been studied in the
framework of the interacting boson model
[11,12], in which the nuclear fermionic
space is mapped onto a much smaller space
of bosonic degrees of freedom. Because of
the relatively small number of degrees of
freedom in this model, it was also possible
to relate the statistics to the underlying mean
field collective dynamics. At higher
excitations, additional degrees of freedom
(such as broken pairs) become important
[13], and the effects of interactions on the
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statistics must be studied in larger model
spaces. The interacting shell model offers an
attractive framework for such studies. In this
model, realistic effective interactions are
available and the basis states are labeled by

exact quantum numbers of angular
momentum (J ), isospin (T ) and parity ()
[14].

In the studies [15-19], the distribution of
eigenvector components was examined
using the framework of the shell model.
Brown and Bertsch [17] found that the basis
vector amplitudes are consistent with
Gaussian distribution (which is the GOE
prediction) in regions of high level density
but deviated from Gaussian behavior in
other regions unless the calculation employs
degenerate single particle energies. Later
studies [19] also suggested that calculations
with degenerate single particle energies are
chaotic at lower energies than more realistic
calculations. The electromagnetic transition
intensities in a nucleus are observables that
are sensitive to the wave functions, and the
study of their statistical distributions should
complement [12,13] the more common
spectral analysis and serve as another
signature of chaos in quantum systems.

Most studies of statistical properties in
the shell model were restricted to lighter
nuclei A<40 (e.g. sd-shell nuclei). In the
previous work [20], we carried out the fp-
shell model calculations for A=60 nuclei

(with **Ni as a core and the remaining
valence particles move within 0f;,,, 1p,,

and 1p,,, orbitals) and studied the statistical

fluctuations of electromagnetic transition
intensities and electromagnetic moments
using the F5P [21] interaction. The
calculated results [20] were in agreement
with RMT and with the previous finding of a
Gaussian distribution for the eigenvector
components [15-19].

There has been no detailed study of the
statistical fluctuations in the N82—model
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space. In this study, we perform shell model

calculations for ***Xe (with *?Sn as a core
and the remaining four protons move in the
N82-model space) and investigate the
fluctuation properties of energy spectrum,
electromagnetic transition intensities and
electromagnetic  moments. The wave
functions are obtained by constructing all
possible configurations within the N82-
model space defined by
2d.,,,19,,,,1h,,,, 3s,,, and 2d,, orbitals

and diagonalizing the effective interaction of
N82K [22] using the shell model program
OXBASH [23]. We find that the spectral
fluctuations are consistent with the GOE
limit and the statistics of both the transition
intensities and  the  electromagnetic
moments, obtained using normal single-
particle energies, are well described by
RMT.
Theory

The fluctuation properties of the nuclear
shell model spectrum are determined by
means of two statistical measures: the
nearest-neighbors level spacing distribution
P(s) and the Dyson-Mehta or A, statistics

[4,24]. We first construct the staircase
function of the nuclear shell model spectrum
N (E), defined as the number of levels with

excitation energies less than or equal to E.
The level spectrum is then mapped onto
unfolded levels using the method of Ref [12]

E, =N(E) (1)
The unfolded levels Ei have a constant

average spacing, but the actual spacings
show strong fluctuations.

The level spacing distribution (which
characterizes the fluctuations of the short-
range correlations between energy levels) is
defined as the probability of two
neighboring levels to be a distance s apart.
A regular system is expected to behave by
the Poisson statistics

)

P(s) = exp(-s)
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If the system is classically chaotic, we

expect to obtain the Wigner distribution

P(s) = (7 /2)sexp(-zs®/ 4) (3)

which is consistent with the GOE statistics.
To quantify the chaoticity of P(s) by

means of a parameter, we compare it to the

Brody distribution

P(s,0) = a(w+1)s” exp(-as“™) (4)

where

(]
o+l

This distribution interpolates between the
Poisson distribution (@ =0) of regular
systems and the Wigner distribution (@ =1)
of chaotic systems (GOE). The parameter o
can be used as a simple quantitative measure
of the degree of chaoticity [25].

The A, statistic (which describes the

fluctuations of the long-range correlations
between energy levels) is used to measure
the rigidity of the nuclear spectrum and
defined by [4]

As(a,L) = minAvB %

at (6)
y JJ[N(E) —(AE +B)[dE
It measures the deviation of the staircase
function (of the unfolded spectrum) from a
straight line. A rigid spectrum corresponds

to smaller values of A, whereas a soft
spectrum has a larger A,. In the Poisson
limit, A,(L)=1L/15. In the GOE limit,

A, ~L/15  for  small L, while
A, =~z InL for large L.
The fluctuation properties of

electromagnetic transition rates are also
considered. Since the matrix elements of
electromagnetic transition operators probe
system’s wave functions so that their
statistical fluctuations provide additional
information. The electromagnetic transition
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probability from an initial state |i) to a final
state | f) is given by [26]
B(wL;JT,T, - J,T,T,)
2
‘5Tin M (@L)-<TT, 1O‘Tsz >M;, (EL)‘
- (23, +1)(2T, +1)

(7)

where @ represents the electric (E) or
magnetic (M) character of the transition

and 2" represents the multipolarity. The
quantities M (wL) and M, (wL) are the
triply reduced matrix elements for the
isoscalar and isovector components of the
transition operator, respectively. It should be
noted that these matrix elements depend on
J,,T, and J,, T, but not on T, For

AT =0 transitions (i.e., T, =T, =T), the

isospin Clebsch-Gordon coefficient in eq.
(7) is simply given by

<TT00T, >=T,/{T(T+1)  (8)
Results and discussion

To examine the validity of RMT in the
above model space, we first analyze the
energy level fluctuations for states (which
have the same parity) with good spin and
isospin. We have calculated the spacings s,

from the unfolded levels by s, = E,,, —E,.

I
To obtain a reliable statistical analysis, we
need to consider a sufficiently large number
of level spacings. To do so we combine the
level spacings of different J in a nucleus to
calculate the P(s) distribution. Here, we

include all level spacings for 0" <J” <9°
states in **Xe nucleus.

Figure 1 displays the calculated P(5s)
distribution (histograms) for the
0" <J” <9* set of level spacings in **Xe
nucleus up to a fixed value of the excitation
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energy E =4 MeV [Fig. 1(a)], 8 MeV [Fig.
1(b)] and 12 MeV [Fig. 1(c)]. The number
of spacings up to 4, 8 and 12 MeV is 45, 407
and 1127 respectively. To study the energy

dependence of the chaoticity in **Xe, we

display the best fit Brody distribution (solid
line) as well as its parameter w. It is noticed
that the Brody parameter @ increases with
the excitation energy, i.e. states at higher
energy are much chaotic than those at lower
energy. Thus, the level repulsion at small
spacings (which is a distinctive feature of
chaotic level statistics) increases with the
excitation energy. It is evident that the
calculated histograms up to 4 and 8 MeV
[Figs. 1(a) and 1(b), respectively] are not
fully chaotic while the one calculated up to
12 MeV [Fig. 1(c)] is in accordance with the
Wigner distribution (dashed line). The
Poisson distribution (dash-dotted line),
which corresponds to a random sequence of
levels and describes regular systems, is also
shown for comparison.

Another important aspect is the effect of
the one body Hamiltonian on the
P(s) distribution. The single-particle motion
in the spherical mean field is regular, while
the nuclear two-body residual interaction is
strongly nonlinear. Fig. 2 illustrates how the
energy level fluctuations in "**Xe change
when single-particle energies are changed.
The top and bottom panels correspond to the
calculated P(s) (histograms), for

0" <J<9" states in the'®Xe, obtained
using the normal and double value of
experimental single-particle energies (for
2d5/2’ 1g7/2’ lhll/Z’ 351/2 and 2d3/2

orbitals), respectively. The realistic residual
interaction is the same in both panels. The
histograms are calculated up to excitation
energy 6 MeV [Figs. 2(a) and 2(c)] and for
the whole energy spectrum [Figs. 2(b) and
2(d)]. The dashed, dash-dotted and solid
lines stand for GOE, Poisson and Brody
distributions, respectively. For the normal
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value of single-particle energies, the
calculated histograms [Figs. 2(a) and 2(b)]
demonstrate chaotic dynamics, where the
Brody parameters are @ =0.85 and 0.99
respectively. Increasing the value of single-
particle energies by a factor of 2 leads to a
transition towards regularity as seen in the
calculated histograms of Figs. 2(c) and 2(d),
where the Brody parameters are now
reduced to @ =0.30 and 0.49, respectively.
For considering the fluctuations of the
spectral rigidity we calculate the A,

statistics for a set of levels with fixed J and
then compute the average A, of several J

values, in order to improve the statistics.
Figure 3 demonstrates the A, dependence

on the single-particle energies. The average
A, for all 0" <J”<9* states in *Xe

(where the whole energy spectrum is
considered) is plotted using the normal and
double value of single-particle energies. It is
obviously observed that for normal value of
single-particle energies, the calculated A,

(filled circles) agrees well with the GOE
limit (the solid line) and for double value of
single-particle energies, the calculated A,

(open squares) becomes closer to the
Poisson limit (the dashed line). It is evident

from this figure that the chaoticity in ***Xe
nucleus, measured in terms of A, statistics,

is strongly dependent on the single-particle
energies. This behavior confirms the results
that we obtained from the analysis of the
P(s) distribution.

To analyze the fluctuation properties of
electromagnetic transition rates, it is
necessary to divide out any secular variation
of the average strength function versus the
initial and final energies. We do this by
applying the method of Ref. [12]. The
average transition strength at an initial
energy E and final energy E’ is calculated
from:
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<B(wL;E,E") >

Z B(owL;i — f )e*(E*Ei)z/Z;/ze—(E’—Ef )2 1272
i f

Ze—(E—Ei)Z/Z}/Ze*(ELEf)2/272
if

(9)
where y is a parameter chosen as described
below. For fixed values of the initial (J,, T)
and final (J,, T ) states, we calculate from
eq. (7) the intensities B(wL;i— f). All
transitions of a given operator (e.g., M1 or
E2) between the initial and final states of
the given spin and isospin classes have been
included in the statistics. The energy levels
used in eq. (9) are the unfolded energy
levels characterized by a constant mean
spacing. The value of y in eq. (9) has been
chosen to be large enough to minimize
effects arising from the local fluctuations in
the transition strength but not so large as to
wash away the secular energy variation of
the average intensity. In this study we use
y=25 We renormalize the actual
intensities by dividing out their smooth part

B(oL;JTT, > J,TT,)
= — (10)
<B(wL;E,E") >

and construct their distribution using bins
that are equally spaced in log,,y. The

choice of log,, y as the variable allows us to

display the distribution of the weak
transitions over several orders of magnitude.
In RMT we expect a Porter-Thomas

distribution for P(y), i.e., a y? distribution
in v=1 degrees of freedom [20]. A x?

distribution in v degrees of freedom is
given by
P(y)=(v/2<y>)"

« y1//2—1e—vy/2<y> /F(V/Z)
In RMT, the matrix element <f |1:|i> of

Yii

(11)

the transition operator T between an initial
state (i| and a final state | f) is a Gaussian
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variable with a zero average, Ii.e.

(f[T|i)=0, [20]. The transition intensity is
proportional to the square of the matrix
element (f[T|i) and thus has a Porter-

Thomas distribution [i.e.,, eq. (11) with
v=1].
We have tested the distribution of B(E2)

and B(M1) 2" — 2" transitions in the

% Xe nucleus. For each transition operator

we have sampled 166° —166 = 27390
transition matrix elements. Fig. 4 shows the
calculated distributions (histograms) of the
B(E2) [Figs. 4(a) and 4(c)] and B(M1)

[Figs. 4(b) and 4(d)] 2" — 2" transitions.
The top and bottom panels correspond to the
normal and double value of single-particle
energies, respectively. It is clear from the
top panel that the calculated histograms of
B(E2) [Fig. 4(a)] and B(M1) [Fig. 4(b)]
are well described by a Porter-Thomas
distribution (solid line), but those of bottom
panel [Figs. 4(c) and 4(d)] clearly deviate
from the Porter-Thomas distribution. This
deviation indicates that there is a transition
towards regularity due to the increase of the
value of single-particle energies, where this
behavior is in agreement with the trend
previously obtained from the analysis of
both the P(s) and A, statistics.

In the case of quantum numbers of the initial
and final states are identical, we can also
examine the statistics of the diagonal matrix

elements <i|'f|i>. However, we still here find

that <i |'I:|i> is a Gaussian variable but with a
nonzero average,

(i[T]i) :%Tr(Pi'I:) (12)

where P, is the projection operator on the
N, -dimensional subspace of eigenstates
with quantum numbers J,T,. Because the
average value of diagonal matrix elements is
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nonzero, the square of <i|f|i> does not

follow a Porter-Thomas distribution.
However, once the average value of eq. (12)
has been subtracted from the diagonal

matrix elements, their squares z are
predicted to have a Porter-Thomas
distribution.  Fig. 5 illustrates the

distributions of the squares of these shifted
reduced diagonal matrix elements (using the
normal single-particle energies) for the E2
electric quadrupole moments [Fig. 5(a)] and
M1 magnetic dipole moments [Fig. 5(b)] of
J” =2" states in the **Xe nucleus. The
values of z are renormalized by dividing out
the secular variation with energy of the
square of the reduced diagonal matrix
element, defined by an equation similar to
eg. (9) but with a single Gaussian (since
i=f). Considering the small number of

data points used to compute the distribution
P(log,, z) (there are only 166 diagonal

matrix elements), the agreement with a
Porter-Thomas distribution (solid lines) is
reasonable. Similar results have been found,
as in Fig. 5, for the double value of single-
particle energies. It is found that the
statistics of E2 and M1 moments of the

J7 =2" states are not affected by the
change of the single-particle energies.

Conclusions

The statistical fluctuations of energy
spectrum, electromagnetic transition
intensities and electromagnetic moments in

% Xe nucleus were analyzed using the shell

model calculations with the realistic
interaction of N82K. It is found that the
spectral  fluctuations of '°Xe are in

consistent with the GOE limit. Besides, a
transition from an order to chaos is seen
when the excitation energy is increased and
a clear quantum signature of the breaking of
chaoticity is also seen when the single-
particle energies are increased. The statistics
of B(E2) and B(M1) transitions and of E2
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and M1 moments show chaotic dynamics in
®Xe (i.e., they follow a Porter-Thomas
distribution). The statistics of
electromagnetic transition intensities deviate
from a Porter-Thomas distribution (i.e., a
transition towards regularity is observed)
when the single-particle energies are
increased, whereas the statistics of
electromagnetic moments are not affected
by the change of the single-particle energies.
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