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Abstract

Keywords

The state and partial level densities were calculated using the partial level densities
corresponding formulas that are obtained in the frame work of the
exciton model with equidistant spacing model (ESM) and non-ESM
(NESM). Different corrections have been considered, which are
obtained from other nuclear principles or models. These corrections
are Pauli Exclusion Principle, surface effect, pairing effect, back
shift due to shell effect and bound state effect . They are combined
together in a composite formula with the intention to reach the final
formula. One-component system at energies less than 100 MeV and
mass number range (50-200) is assumed in the present work. It was

found that Williams® plus spin formula is the most effective
approach to the composite formula, and it is in good agreement with
experimental results. All calculation has been made using programs
with MATLAB language written for this purpose.
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Introduction

The properties of nuclei at high excitation
energies are important for many nuclear
reactions, particularly those that pass
through a highly excited compound
nucleus. It is sufficient for this purpose to
know the over-all statistical properties of
the nuclear levels, i.e. the probability
distribution functions of the parameters of
the nuclear levels as a function of
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excitation energy. The nuclear level
density (PLD) represents the most
important property than others, especially
in the cross section calculation of
compound nucleus and pre-equilibrium
model reactions. The level density can be
divided according to the excitation energy
into two regions, namely ; the low and
high energy excitations. The low-lying
nuclear excited levels are small in number,
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well separated, and rather than simple in
structure [1]. With increasing excitation
energy (E), beyond a few MeV, the nature
of the excitation levels becomes very
complicated where the spacing between the
levels is progressively reduced [I1].
However, an individual description of the
discrete levels becomes impossible.
Indeed, not only the levels are more and
more close to each other, but acquire larger
widths. Therefore, the only possibility to
describe them is the statistical frame work
[2].
I1. State Density with ESM Formulas.

The first attempts to study level
densities have been achieved at the end of
the thirties, where the ESM was suggested
by Bethe, (1936) [3]. In this model, the
nucleus is represented as a system of
fermions susceptible to occupy the levels
with density sometimes described as the
Fermi gas level density expression, and
this is incorrect. In a Fermi gas, the single
particle level density increases
approximately as the square root of the
particle kinetic energy, while in the model
of the present study it is a constant. This
expression stands to the zeroth order
approximation of the level density.
Therefore, the single particle levels (g) are
equidistant and no degenerate with a
constant single particle level spacing of
(D=1/g). An analytical formula of
cumulated densities based on saddle point
approximation was obtained by Bethe in
1937 [2]. The simplest formula to calculate
the PLD is obtained by Griffin [4].
Griffin [4].

n rn-1
wnEy =5t . (1)
n!(n—1)!

where n is exciton number. Eq.(1) can be
reformulated [5] as:

gnEn—l

W (n, E) = W(p, h, E) = DU(n—1)!

-2

which is called Ericson formula, where p is
number of particles and h is the number of
holes. However, to make PLD (eq. (2))
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more realistic, one must add some
corrections which can be listed as follows:

a- PLD with Pauli Effect Formula:

In the language of pre equilibrium
models, the Pauli principle requires that no
two excitons of the same type are allowed
to be in the same state, which implies that
they cannot have the same energy. Then,
the PLD takes the form [6]:

a,, =L[(p2 + D)+ (B =h)] e (3)
2g

where ©® is the Heaviside step function
which is unity for positive values of the
argument and zero otherwise, and

gp+h(E_APh)p+h—l

plRl(p+h-1)
which is the minimal energy needed to put
(p) particles and (h) holes in the levels
taking into account the Pauli effect. The
Pauli correction term, which lowers the
energy in eq. (3), is:

W.(p,h,E) = O(E —a ) (4)

1 2 2
Ap, —E[(p +p)+(h”=3h) ... (5)

b- PLD with Surface Effect Formula:

The surface effect correction to the
PLD starts from the finite dep th of the
nuclear potential well. The corrections to
the full particle-hole PLD are due to
eliminated states that have a hole below the
bottom of the well. The presence of the
nuclear surface region will most strongly
affect  the initial  projectile-target
interaction, which produced the composite
nucleus. The inclusion of the effect of the
nuclear surface imposed by the densities is
employed, and simple parameterization of
the effective well depth for the first
projectile-target  interaction can be
obtained in calculation of PLD [7-10] as:

W(p,h, E.V)=W(p,h,E,©)f(p,h,E,V)..(6)

where W(p,h,E,0) is the infinite well
resulting from Williams formula and the
function (f ) represents the surface
correction [7] :
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I E

S(p.hEYV)= g(—l)" [h](E_l an_l E-iV)

E’:} is the binomial coefficient , V is the
central depth of the nuclear potential:

for h)l

V. =38 MeV
v, for

,and V, is the effective well depth.

The main surface effect is to reduce the
amount of excitation energy which a hole
degree of freedom can carry.

c- The PLD with Spin Dependence
Formula:

The ESM model was based on a "phase-
space" assumption. This means that only
the state of energy counts in the
development of calculations. Since the
angular distribution is very important in
nuclear reactions, then one cannot afford to
lose this information during model
calculations.  Therefore, the angular
distribution of the emitted particles was
added to the model systematically [11].
The particle-hole state densities with spin
dependence, W(n, E, J), are assumed to be
factorized by a Gaussian distribution
function of an angular momentum J [12-
14] such that:

Wn, E, J) = Whn, E) R, (J)
R, (J) is angular momentum distribution
function which is given as:

~(J+1/2)

R (J)= 2J+11 exp( Py S FUT (10)
2027)20? T

The exciton-dependent spin  cut-off
parameter (o,) can be expressed in
different formulas such as[15,16] ,
respectively :

0, =0.16n A”°

.............. (11)

0,'=0.26 n 477
d- PLD with Pairing Effect Formula:

The most important component of the
residual nuclear interactions is the pairing
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force, which is a strong, attractive short-
range two-body interaction that couples
together pairs of identical nucleons [14].
However, due to the pairing energy of each
pair of same kind of particles, one has to
add an additional energy to break such
pairs for nuclei with even number of
nucleons of either type, in addition to the
energy needed to excite them. Then, the
effective excitation energy is produced
from subtracting the pairing energy from
excitation energy (incident energy).The
Pauli correction was also modified to be
consistent with pairing correction, so that
the PSD formula becomes [15]:

"(E+P+B. )"
W(p,hE,P+B,)="> ( )
3 phl(n—1)!

........................................... (12)

where By, is the modified Pauli correction
following the Williams term Ay,

B, = A1+ (2gA/n)’

and P is the pairing correction term, which
is determined by the ground-and excited
state gaps A, and A(p,h,E),

P= i SN =A) i (14)

A, can be obtained from the following
fitting expression [14] :
Ao =An+ Az o (15),
where the neutron and proton gaps are:
Ax=1374-0.00516 N

e eeeeeenne (16).
Az =1.654—0.00958 Z
It is related to the condensation energy
C, = gA02 /4. Then, A(p,h,E) can be
calculated from the following
parameterizations formula [15, 17]:

A { 0.996—1.76(n/n.)(E/C)*®if E>E

A,

0 if E(E,

(17)
where n, = 0.792 gA, is the critical
number of excitons and Epase 1S the energy
of pairing phase transition given by:

phase
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s Clo716+2440/ 1,27 it nin, <0446
Phase0 if nln_)0446
(13)
Actually, the lower limit in eq.(18) was
adopted [17] in order to take into account
explicitly the lack of a phase transition for
small n. The above respective equations
provide PLD values even below the
minimum excitation energy (threshold:
U ) characteristic of each configuration:

[c2swiny-157nin ] if nin <0496
C[1+0.627(n/n,y] if n/n.)0.446

II1. PLD with Finite Potential Well (non-
ESM):

At the increase of excitation energy, g is
not being constant anymore, because the
spacing between levels (D=1/g) becomes
varying with excitation energy [14].
Therefore, the effect of finite depth
potential well becomes very important [ 7,
11, 18]. In fact, every potential well with a
finite depth has a finite value of Fermi
energy (Ef or £, ), and its single-particle
states have a non equidistant spacing g(=).
The corresponding single particle state
density is [12, 19, and 20]:

1
g(e)=Kz¢?
where (Krg = ZA/£,”* ) for the Fermi
gas square potential well. For the truncated
harmonic oscillator there is a different
formula. For the square well, the Fermi
energy have been assumed as
g, = &0 MeV , and at this energy g
becomes :

8(50)=E

IV. The Composite PLD Formulas:

The composite formula includes the
previous correction of PLD within the
frame work of ESM calculations. In
addition to the bound state condition,
which is applied to particles, their energy
must not exceed the particle binding
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energy( B), [ 21, 22], in addition to a back
— shift energy (S) due to shell effects [23].
Therefore, the PLD calculations are
represented by three composite formulas:

a- The composite formula in the ESM :
The single level density, which was used to
calculate the PLD, is obtained from the
ESM [18] as:

g=g,+t&, :£g+ﬁg , then the PLD
n n

takes the form :

gnEn—l
W(pah:E)_mfk(p’haE’F)
.............................................. (22)
where,
pon (1Y i E—Ak(p,h)—S—iB—jF)'H
ot e L
e xO(E - E,, — S —iB— jF)

p(p+l)+h(h+l)+(p—1)2(h—l)2

’h :E;hres ’h -
4.(p. 1) ) ” o)

which is the modified Pauli and paring
corrections, also including the effect of
passive holes [17], and Egyesn 1S the
modified form of the threshold energy for a
given exciton configuration with inclusion
of the pairing interaction and P, is
maximum(p,h).

2 2 2 2
(6 -8) pm[(p_mj . Az}
g

Ethresh (p7 h) =
.......................................... (25)
and,

F(p’ h) = 12 + 4g[E - Ethresh (p5 h)]/pm

b-The composite formula with NESM:
In NESM g, and g, are varied with
energy by taking the Fermi energy as F,
=38 MeV:
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s p @ a@ae
plhl(n-1)!
......................................... 27)
where
g, (ph) =g, (@) = gU[F" +J
F.
........................................... (28)

—:Eﬁ@%&m
" n f.(p,h,E,F)

E-pu,
h
L EF)=YT > (1) C;C;,[

uh =

E—A,(p,h)—s—iB— ij”
E

n iB
X[ 1+—
p E-4,(p,h)—s—iB—jF
('D(E*Ezhmh*S*iB*jF)

¢- The composite formula with NESM and
spin distribution

The spin distribution is considered with eq.
(27) as follows :

sl B
plhl(n-1)!

V. Results and Discussion :

The comparison of the calculated PLD
as a function of excitation energy, E, based
on all the previous formulas, with constant
configuration and mass number “Fe s
shown in Fig.(1- a). From this comparison
it can be seen that : the calculated PLD
which is based on eq.(31) , is less than
others, because this formula contains all
the corrections. It is so close from the
value of PLD based on the composite ESM
formula based on Eq.(22). Also, it is

fP.hEF)R()
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obvious that, as more corrections are
added, the calculated PLD values decrease
especially at higher excitation energies.
This is mostly explained due to reduction
in the effective excitation energy.
However, the effects of some corrections
such as Pauli effect, surface effect and spin
distribution, decrease the state density
values regardless of the excitation energy.

The most approached values of PLD
calculated by using Griffin’s formula,
eq.(1), and William plus spin distribution
formula ( obtaining the most important
corrections as Pauli exclusion principle and
spin distribution), and the composite
NESM formula ( containing all corrections
that exceed the PLD and reduce it except
for the spin distribution) based on Eq.(27).
The PLD is very much affected by the spin
distribution when the comparison was
made between PLD based on NESM with
and without spin distribution. The Eresh of
PLD is larger when eq.(31) is used. From
the comparison of Figs.(1- a, b, ¢ and d),
where Fig.(b, ¢, and d) are the same as (a)
but with mass number 96Ru, Gd and
"“Hg | respectively, one can noticed that
as A increased , Eesn 1ncreases and the
difference between the ESM and NESM
increases too. Fig.(2)shows the effect of
spin distribution as a function of E and A.

—-— gEFG
Eric.
Surf. 1
! — — pair.
! Grif.
10° L —— (j=5.c=0.16)

£q.27)
"""" eq. (22)
"""" (c=0.16.j=5) : eq. (31)

N N N

! L ! L 1
0 10 20 30 40 50 60 70 80 90 100
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10 Will. | (4.3), Ru-96 | ||
Surf.
— — Pair.
o Grif.
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® ) ‘ ‘ ‘ e (c=0.16.j=5) eq (31)
0 10 20 30 40 50 60 70 80 90 100
E(MeV)
107
10 T i
- B — = _7_1_2_———_7
_ 1" /i:::::::::::::: """" ]
% : oE)F G
§ . Eric.
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— — Pair.
; ¢ Grif.
10° h ——— (j=5.c=0.16)Spin
; eq. {27)
------- eq (22)
1% N {c=0.16.j=5) : eq. (31)
o 0 3 a0 = & 70 80 80 10
E(MeV)
(©
1[]ZD
10" P
e e—
ks T mpmmIIIIIIIIINT
‘% = —-—gE)FG
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103 X — (.75.c=0.16)Spin
i eq (27)
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Fig.(1): The comparison of the calculated
PLD as a function of E based on all
formulas representing all the various
corrections, with constant configuration and
different mass number (a) for **Fe, (b) *Ru
, (c) ™°Gd , and (d) ***Hg, respectively .
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10* ! ! ! ! ! ! ! ! I
0 10 20 30 40 50 60 70 80 90 100

FileV)

Fig. (2): The comparison of PLD based on
NESM formula with spin distribution as a
function of E and A, with constant
configuration and spin.

Figs.(3-a,b) represent the comparison of
the calculated NLD (total level density)
with the experimental data for °Fe and
7n [24] respectively. The PLD is
calculated by using William formula with
spin distribution where the summation is
done for n= 1 —f. Results of The
William’s formula with spin distribution is
the nearest approach to that of composite
formula, that is obtained from comparison
result of calculated PLD for nuclei with
mass number range 50- 200 and attributed
to William’s formula with spin distribution
obtaining the most important corrections.
This evidently proves that a good
agreement between our results and other
[24].

However, the composite formula is not
used because of the effect of the step
function that makes Enresh high. In other
word, the composite formula can be used
for intermediate energy which is
approximately > 10 MeV.
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Fig.(3): Comparison of results of the
calculated NLD based on Williams' formula
plus spin distribution, where J=5 and spin

cut off parameter obtain the formula of
Herman and Reffo [16], with experimental
data for (a) *°Fe and (b) ®zn

VI. Conclusions:

From the above results, one can be
conclude that the Pauli term reduces the
PLD values because of its nature which
blocks the states. The effect of spin
distribution ~ function increases with
increasing E and A. Also, it is reduces the
PLD values, so that the PLD increases
smoothly with increasing E and A. The
PLD values are reduced by the pairing
effect at low incident energy. The pairing
effect increases with decreasing E. The
effect of the finite depth on PLD
disappeares when the incident energy is
equal to the Fermi energy ( E¢ ) of the
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potential well. This effect reduces the PLD
when E < Ef. As more corrections are
added, the calculated PLD values
decreased especially at higher excitation
energies. Also, it was found that William’s
plus spin formula, which has been inserted
in the PLD formula is the most successful
approach to the composite formula and
agrees with standard experimental results.
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