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Abstract

The basic analytical formula for particle-hole state
densities is derived based on the non-Equidistant Spacing Model
(non-ESM) for the single-particle level density (s.p.l.d.)
dependence on particle excitation energy U. Two methods are
illustrated in this work, the first depends on Taylor series
expansion of the s.p.l.d. about u, while the second uses direct
analytical derivation of the state density formula. This treatment
is applied for a system composing from one kind of fermions
and for uncorrected physical system. The important corrections
due to Pauli blocking was added to the present formula.
Analytical comparisons with the standard formulae for ESM are
made and it is shown that the solution reduces to earlier
formulae providing more general way to calculate state density.
Numerical calculations then are made and the results show that
state density behavior with excitation energy deviates from
Ericson’s and Williams’ formulae types, especially at higher
excitation energies.
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Introduction

The exciton model [1] provides a
good approach to describe continuum
emission, where the intermediate stages are
treated semi-classically to explain the
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preequilibrium emission (PE) of the
excited nuclei. An important physical
quantity needed in this course is the
particle-hole state density which describes
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the population of the single-particle states
per energy interval.

The single particle level density
(s.p.l.d.), 1s wused to describe the
dependence of the state density, a(p,h,E),
on the particle number p, hole number h,
and excitation energy E. The exciton
number, n, is given by the sum (p+h).
Assuming p-particles above Fermi surface,
and h-holes below it, then the exciton
number represents the principal degree of
freedom that the state density depends on.
If one assumes that the s.p.l.d. is energy-
independent, i.e., g is constant, then the
model is called the Equidistant Spacing
Model, (ESM). The s.p.l.d. in this case is
usually approximated by the relation
g~A/d, where A is the mass number of the
nucleus and d is the energy spacing and the
values used for this parameter varies from
8 to 26 MeV, depending on the mass of the
nucleus. The ESM approach was used to

derive the wuncorrected state density
formula usually known as Ericson’s
formula [2].

g'E™

Jd(phB=—"——

ph(n-1)!
and to obtain the formula that includes
Pauli blocking energy in the energy part,
also known as Williams’ formula [3],

M,

o GEA)

where Ap 1s Pauli blocking defined by,
A= FHT+p-h h

p——
9 X

Egs.(1-3) are used for state density
calculations assuming a system of non-
interacting particles of the same kind, i.e.,
one-component Fermi gas, FG.

There have been many developments
to these equations in order to add important
corrections, such as pairing [4-6], shell
structure including finite well depth
correction and surface effect [7-9], charge

S
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effect [10], linear and angular momentum
distribution [11-14] and isospin [15-18].
Even if one includes all the above
corrections during state density
calculations, the obtained values still show
some inconsistency with experimental
results, specially during analyzing spectra
with high and low excitation energies for
mass numbers less than 15 or larger than
150 [10]. This put the ESM approach
under increasing debate [19-20], and it
revealed the necessity to find other more
accurate approaches to describe the state
density. However, the ESM is treated as an
approximation in most cases, because the
actual nuclear states depend on the
excitation energy and the exciton energy U
as well, i.e., g=g(u). Therefore, some
attempts to replace the ESM approach
were made only few years after the
proposal of the exciton model. For
example, Williams [21], Albrecht and
Blann [22], and Herman et al. [23-24] used
numerical methods to calculate the level
and state density. Other methods such as
Shell Model approximate calculations [25],
Shell Model Monte Carlo (SMMC) [26-
27], and projected SMMC [28-30] were
focused on state density calculations. In
addition, the state and level density for
deformed nuclei was a subject of interest to
many studies [31-32].

The need for simple analytical
description of the nuclear state density
away from the ESM approach is still
evident [20]. Bogila et al. [33] proposed an
approximate method for particle-hole state
density calculations for non-ESM by
expanding the s.p.l.d. dependence on the
excitation energy via Taylor series
expansion and taking only the first three
terms. Harangozo et al. [20] extended
further this method to include the effects of
the nucleon binding energy, B, and Fermi
energy of the system in a more reliable
way.

An exact analytical method is given
in this paper to calculate nuclear state
density for any given exciton
configuration away from the ESM
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approach. The present method is basically
an extension of the work of Bogila et al.
[33] and Harangozo et al. [20] but without
any further approximations. The exact
form of the state density calculation for
non-ESM dependence of the s.p.l.d., is
given, where we try to extend the methods
mentioned above. However, the excitation
energy dependence given here does not

explicitly

include

the wvarious effects

mentioned at the beginning, but they are
added to the main equation by inspection.

Particle-Hole State Density with non-

ESM

A. The s.p.Ld.
The s.p.l.d. is the key at which the
expression of the state density depends on.
Earlier attempts were to consider variable
Fermi level F [34] or more free energy
dependence on u below and above Fermi
surface [35, 36]. Kalbach [9] discussed this
in some details and the

dependency

conclusion was made is that, regardless the
specified type of the potential well, the
s.p.l.d. is expected to vary between that of
the simple square well potential to the
simple harmonic oscillator. In all cases, the
required task is
dependence of the s.p.l.d. on energy.
Below is a description of the method given
by Bogila et al. [33] and Harangozo et al.
[20] to illustrate such dependence. In
Table (1) a list of the symbols used in this

work is given.

Consider
indistinguishable types of particles p and

their holes h.
the s.p.l.d. is given as,

&
g(g) =0 \/ E

where g, =3A/2F, is the sp.ld. at

Fermi level energy. F is defined for the
nuclear system under study by the relation,

x

8

2/3
7[)

to find the proper

a system of

In the frame of FG model,

h2

2mro2

4),

, where ro~1.2 to 1.5
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fm, depending on the size of the nucleus,
and for particles and holes we have

_F
T } Q)
e=F,

Thus, we can write the following,

u
gp(up)=g0 1+E
u
gh(uh) = go\ I_E

In order to have well-behaved s.p.l.d.
dependence on U, eq.(6) must be governed
by suitable Heaviside function so that at
the un-allowed limit u™>F the results still
converge. Thus,

0,()= 1+% A(B-v)
().
6w =12 OF-u

The state density then can be found from
the relation [20],

0

| . .
a(p,h,E)=ﬁj dy® g,u™)[ du” g,d”)..f dP g, (uP) x

[ dPg,f da ). | dPgud E-3up ”zu;m] ®.
0 0 0 2= j=l

where Dirac delta function, 0 in eq.(8),
can be given in its integral form as,

P h 1 . P h
&E;ul;uj)zzﬂj’:dkex |k[E;ul;uj] ).

If one uses this equation, then the state
density can be given as,
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w(p,h,E) =

400

27 pth!

—00

[Z gh(U)exp(—iku)duJ

| exp(ikE)dk(
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which represents a convolution of the
s.p.l.d. for particles and holes with Dirac

p
g,(U)exp(-i ku)duJ function.

5 o8

(10).

Table(1). List of symbols used in this work.

A Mass number of the target nucleus

Aph Pauli blocking energy

B Binding energy of the emitted nucleon

Bph Modified Pauli energy

CPand C" Coefficients of integrating P(K) and H(k)

Ce Condensation energy

D’ and D" Coefficients of expanding eq.(6)

E Excitation energy

E phase Pairing energy due to phase transition

F Fermi energy of the target nucleus

P(k) and H(k)  Functions that represent part of the state density integration

P(A) Pairing energy

O(X-Xo) The Heaviside step function

d Energy spacing in the ESM approach

Jo .0 Single-particle level density (s.p.l.d.) for ground and excited states

Ao, A Energy gap of the nuclear levels for the ground and excited states

£ Exciton energy

a(p, h, E) State density of the system for p particles, h holes and excitation energy E

u® and u™ Single particle and hole excitation energies

n,p,h Exciton, particle and hole numbers; n=p+h

N¢ Critical exciton number

o, M Nucleon classical radius and its effective rest mass

z D (u)
B. State density formula %= g(’; mi [F) b
The difference between the present

paper and the method used in [20] and [33] g Zx: o (Ejm -
is that, in here, the entire expansion of " s mi\F ’

eq.(6) is taken, and not only the first three

terms. For simplicity, further assumptions
(such as the effects of B and Heaviside step
function) are omitted for the time being.
These are considered as modifications and
will be added later.
expansion of eq.(6) about U and

rearranging the terms,
method is to write,

where, for later convenience, the defined
coefficients are given in such away that,

1 m=0,
D, —{(_Dmﬂ (\2mz;3\)!! ol

Using Maclaurin | m—o, 13),
D;—{_(zmzf)!! a1,

which reduces to the forms given by
refs.[20, 33] if one takes the first three
terms only. Let us first re-write eq.(10) in a
simpler and more direct form as,

then the first
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+00

> p!h!j exp (IkE)[P(k)]

P[H (0] dk

w(p,h,E) =

(14).

Two methods are applicable at this point,
one can either use the expansions (11) and
(12) to find the solution of eq.(14), which
will give a solution that depends on how
many terms we take from Taylor-
Maclaurin expansion. Inclusion of the
entire terms will give a mathematically
exact solution.

The second method, which we shall
follow in the remaining of this paper, is to
substitute eq.(6) directly as it is into
eq.(14) and solve the integral

P()=[ g,Wexp(-iku)ydu =g,

< . u
F —iku),/1+— du 15),
{ exp(-iku) 1+ (15)

and a similar expression for H(k). The
problem solves to, after some algebra,
o) Cp
S Pk) = - 16),
)= Z (iFk)™ 1o
[s's} Ch

H(k)= i 17),

(0= Z (iFk)™ a7

where the coefﬁc1ents here are redefined in
a different way than eq.(13), as,

p_ _1\M+l _i
C. =(-1) (m 2}!

_ (m_gjz

Grouping these with eq.(14) and arranging
terms of the solution, one reaches to the
formula,

hEy=—t - %F s
o(p,h,E)= p!h!2n+1ﬂ_(n+1)/2 Z H

a i=

(18).
Ch =

o

e

= o explik E |dk

Z H Ct:]; J. H n-+a E[f.ﬁra ]+b +b,+..+b (19)
blb i 2 (||:k) ragtetaptbyth Ay

by =0
On further making the following
definition,
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and solving wusing Cauchy’s integral
formula, one can obtain the following
solution,

[1D

. 9o
s o(p,h,E) = o

EN—l

FN—n(N _1)' (21)9

where, for the sake of saving space and
simplicity, we have make the name of the
following special mathematical

multiplication operator E , as,

> HC"HC“

apa; -8,
by.b, .. bh

—
- =
—_—

(22).

Eq.(22) justifies the proper definition of
the coefficients in eq.(18).

Eq.(21) actually shows that including
eq.(6) without expansion will lead to the
addition of more terms to Ericson’s
formula, eq.(1).The higher terms are
associated with the dependence of 1/F"™"
which forces the higher terms to converge
rapidly as N (and hence, the expansion
indices @’s and b’s) increase.

C. Analytical Comparisons

1. With Ericson’s Formula

It is convenient in the present point to
check whether the solution above, eq.(21),
reduces to Ericson’s formula, eq.(1), at the
limits a;=a,=.. =b;=b,=.. =0. These limits
mean that we took g as being a constant of
energy. Indeed, at these limits, then one
will have N=n and the mathematical

operator = reduces to Q" 2 %). Clearly
this will make eq.(21) to be equal to eq.(1),
Ericson’s formula.

2. With Bogila et al.

The equation due to Bogila et al. [33] is,
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>

Pk &
no(p,hE) =0 (phE)D > X i

ke i g

i+l ~KI AT Al A
-ntc)elclcx

NI ki iy i+
& & E1 itK 1(n_1)! (23
g, g, (n=1+1i,+ J, +k, +1)!
" d ' 1 .
here =— , =—, if

one rewrites it as, using eq.(1), then letting
ki=a, 1,=s, I,=Db, j;=q, and defining N for
this case is their sum, so we can write the
compact form,

p
p! h!Za: b
b 2 2
Z(_l)quraHHC;HCr: %
q 1= 1=
1 EN—I

225+2q+a+b F N-n (N _ 1)!

which, on comparing with eq.(21), one can
see the close equality if one sets the indices
to change from zero to 2, i.e., when taking
the first three terms only. In eq.(24), the
difference in the summations limits are
ordered this way because the expansion
was limited to take only few terms, thus if
one wants to raise the resulting expansion
sums to the powers of p and h -in order to
apply eq.(14)- one wusually uses the
binomial method. However, since in the
present method extends to take eq.(6) as it
is without expansion, other methods were
used here to ensure convergence of these
summations.

Results and Discussions

In order to check the accuracy of the
present treatment, we choose to compare
the numerical results with more than one
standard formula of the state density. We
thus aim to test this procedure regardless
these restrictions, but we chose F to have
two values: 38 MeV and 100 MeV and
perform calculation that are follow the
condition E<F. However, the proper
selection of F represents a serious

)s
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challenge in PE calculations. If one uses
the analytical value of F it will be no more
that ~ 21.5 MeV in this case, resulting a
proper  (analytical) value of Qo
=3A/2F=3.907 MeV™'". On the other hand,
setting such small value of F will highly
reduce the results at E > 30 MeV.

In the present work, the value of g,
was set to be 4 MeV™' by selecting *°Fe
nucleus with d equals to 14 MeV. ¢, was
set to the value given above regardless the
chosen Fermi energy. We compare first
with  Ericson’s formula, then with
Williams® formula that considers Pauli
blocking only, and then with Williams’
formula that includes pairing. Finally we
compare with realistic 1p-1h state density
results.

The results of applying eq.(21) for
particle-hole state density calculation are
shown bfbw for exciton configurations
(1p,1h), (2p,1h) and (3p,2h); which
represent the most important configu-
rations in PE calculations. The summation
terms in eq.(21) were treated such that the
maximum was set to a certain selected
value, not to exceed 30, rather than
infinity. This 1is because of the
programming limitations.  Calculations
were made using Matlab code written for
this purpose.

A. With Ericson’s Formula

In Fig.(1), the results of configurations
(1p,1h) - or simply (1,1)- are shown for
non-interacting system. First, in the case
(@) F=38 MeV, only three terms are
adequate for practical calculations, where
as the number of summation terms
increases, the ratio tend to fall. However,
using a conveniently large F value, as in
the case of Fig.(1-b), then the system of
calculation will be slightly affected when
changing the terms from 3 to 30. The
number of terms was not chosen to be the
same in both cases because in case (b) the
differences between 3 and 6 summation
terms are insignificant in such away that
the two curves can not be distinguished.
This dependence on F strongly suggests
that the value of F plays the important rule
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in deriving and applying eq.(21). Actually,
this comes from the basic assumption
made at the beginning, that the application
of eq.(6) is valid for all values of u,
whereas it must be applied for the values
satisfying the condition U/F <I; or to use
eq.(7) instead.

Second, the general behavior of both
cases shows that, as the excitation energy
increases in this configuration, the ratio
between @™ M (p h,E)/ &"(p,h,E)
decreases which indicates the importance
of corrections at higher energies due to
higher terms. This behavior is the same as
found by Bogila et al. and Harangozo et al.
[20]. It was pointed out before [3] that
Ericson’s formula overestimates the state
density calculated values by a considerable
amount at higher energies. At other
exciton configurations, the difference will
be even higher at low energies as seen
from the Figs.(2) and (3) below.

B. With Williams’ Formula

Inclusion of Pauli blocking energy is made
here by inspection, that is, to add A(p,h)
into eq.(21) directly by assuming that the
excitation energy E will be reduced by this
amount. Then, eq.(21) is rewritten as,

non-ESM ,h,E — gcr:
U T

(E - A(p.m)"
FY""(N =1)!

[1D

(25),
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The results are shown in Figs.(4-6),
where in this case the ratio @""
EMp,h,E)w"(p,h,E) is shown as a
function of the excitation energy, E. In
Figs. (5) and (6), exceptional differences
occur for large values of F where the ratio
never reaches unity. However, in the case
for F=38 MeV, the behavior of three
summation terms is consistent with the
expected results, and again as the number
of terms increase, the ratio tends to drop.
It should be mentioned that three terms and
thirty terms both result almost the same in
Figs.(6-a and 6-b), where the deviation is
less than 2% at maximum energy.
Therefore, only results for 30 number of
terms are shown. Also note that at these
figures, the curves starting from values
larger than two, indicating that at such low
energies the differences between Williams’
formula and eq.(25) are quiet large. This
also indicates that inclusion of Pauli
blocking energy should be accompanied
with more accurate terms.
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14 1.4
' L 3 terms
I ems 0l 30 terms
1.2 + e 1.2 +
2 1
IS I
o e
© 0.8
m -
0.6
L 0.6 r
04 r r
- 04
0.2 . L : L
0 20 40 0.2 L 1 L 1 L 1 L 1
Energy, MeV 0 20 40 60 80 100
Fig.(1-a). F=38 MeV Energy, MeV

Fig.(1-b). F=100 MeV

Fig.(1): The ratio between the results of eq.(21) and Ericson’s formula, eq.(1), for (a) F=38 MeV,
and (b) F=100 MeV, for configuration (1,1). Target nucleus is *°Fe. In both cases, g, was set to be 4
MeV™. The number of summation terms are shown for each case, which represent the maximum
number of iterations at which the calculation program terminates

1.4 14

Ratio

i —3terms B
12 r O 6terms 1.2
1 T
I o i
0.8 T 08
- m i
0.6 06 |
0.4 0.4 +
02 ! 1 | 02 1 1 | L , | ) | )
0 20 40 0 20 40 60 80 100
Energy, MeV Energy, MeV

Fig.(2-a). F=38 MeV Fig.(2-b) . F=100 MeV

Fig.(2): The same as Fig.(1) but for configuration (2,1).
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1.4
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1.2 +

0.8 r

06

04 r

0.2 1 1 1 1 1 1 1 1 1
0 20 40 60 80

Energy, MeV
Fig.(3-b). F=100 MeV

Fig.(3): The same as Fig.(1) but for configuration (3,2).
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0.6
04 r
0.2 1 1 1
0 20 40
Energy, MeV
Fig.(3-a). F=38 MeV
Conclusions

In conclusion, it is found that first and
most simple solution eq.(21) actually
represents the version of Ericson’s formula
for non-ESM. The s.p.l.d. was used in
order to find the analytical expression of
the state density. The present treatment
shown in eq.(21) is somewhat useful in
practical calculations. This formula was
put under several numerical comparisons
with the standard Ericson’s formula, and
Williams® formulae that include pairing,
both with ESM approach and for the
exciton configurations (1,1), (2,1), and
(3,2), and it was shown that,

1- Theoretical and numerical
comparisons with Ericson’s formula for
the first term of the solution showed that
the present method is in a good
consistency. The effects of large Fermi
energy were also shown to change the
behavior of the state density.
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2- Theoretical comparisons with the
formulae of Bogila et al. [33] and
Harangozo et al. [20] for the first three
terms showed that the solution for the
present method is actually a general
solution that turns into the special cases
mentioned above if one takes only three
terms of the s.p.l.d. expansion on u.

3- Pauli blocking energy was included
in eq.(25) and numerical calculations
show that the behavior of eq.(21) is
slightly improved. This suggested further
development of the present treatment.
Comparisons with Williams formula
indicated better consistency at higher
energies, but the results seem to deviate
at low energies.
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Fig.(5-a). F=38 MeV

14 1.4
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g o8 : P 08 T
0.6 + 0.6 r
04 L 04 B
02 ) . ) . ) . ) \‘ . 0.2 1 1 1 1 1 1 1
0 20 40 60 80 100 0] 20 40 60 80 100
Energy, MeV Energy, MeV
Fig.(4-a). F=38 MeV Fig.(4-b). F=100 MeV
Fig.(4): The ratio between the results of eq.(25) and Williams’ formula, eq.(2), for configuration
(1,1).
1.4 14
- "
12 ¢ - = =6terms ! T\
1 I ‘\ l ...........
. B 2 I
0.8 . S 08
1 .. 4 L
0.6 *. 0.6 r
04 | 04 +
0.2 L L L L L L L L L 02 I L [l L [l L 1 1 1 1
0 20 40 60 80 100 0 20 40 60 80 100
Energy, MeV Energy, MeV

Fig.(5-b). F=100 MeV

Fig.(5): The same as Fig.(4) but for configuration (2,1).
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20 40 60

Eneray, MeV
Fig.(6-b). F=100 MeV

Fig.(6): The same as Fig.(4) but for configuration (3,2).
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