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Abstract Key words 
 The ground state proton, neutron and matter densities of exotic 11Be 

and 15C nuclei are studied by means of the TFSM and BCM. In 

TFSM, the calculations are based on using different model spaces for 

the core and the valence (halo) neutron. Besides single particle 

harmonic oscillator wave functions are employed with two different 

size parameters c  and v . In BCM, the halo nucleus is considered 

as a composite projectile consisting of core and valence clusters 

bounded in a state of relative motion. The internal densities of the 

clusters are described by single particle Gaussian wave functions. 

 Elastic electron scattering proton form factors for these exotic nuclei 

are analyzed via the plane wave born approximation (PWBA). As the 

calculations in the BCM do not distinguish between protons and 

neutrons, the calculations of the proton form factors are restricted 

only by the TFSM. 

The reaction cross sections for these exotic nuclei are studied by 

means of the Glauber model with an optical limit approximation 

using the ground state densities of the projectile and target, where 

these densities are described by single Gaussian functions. The 

calculated reaction cross sections at high energy are in agreement 

with the experimental data. 
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 C15و  Be11وى الغريبة للن المقاطع العرضية للتفاعلتوزيعات الكثافة, عوامل التشكل و

 عادل خلف حمودي، غيث نعمة فليح, احمد نجم عبدالله

 قسم الفيزياء، كلية العلوم، جامعة بغداد، بغداد، العراق

 الخلاصة

و  Be11تم حساب توزيعات الكثافة البروتونية والنيوترونية داخل النواة بالاضافة الى الكتلية للنوى الهالة الغنية بالنيوترونات  

C15 استندت الحسابات على  ذو التردديننموذج القشرة أنموذج العنقودي الثنائي. في لأباستخدام أنموذج القشرة ذو الترددين وا

استخدام فضاء لنيوكلونات القلب مختلف عما هو عليه لنيوكلونات الهالة. استخُدمت الدوال الموجية للجسيمة المفردة لجهد 

)(تلفتين للثابت التوافقي واحدة للقلبالمتذبذب التوافقي مع قيمتين مخ c  و الاخرى للهالة)( vنموذج العنقودي لأ. في ا

ً بحركة نسبية  الثنائي تم افتراض ان نواة الهالة عبارة عن قذيفة مركبة تتكون من عنقودين هما القلب والهالة تتحركان سويا

في وصف حركة كل من عنقودي القلب والهالة. لقد تم اوس للجسيمة المفردة گلقد تم استخدام دالة  بالنسبة لمركز كتلتيهما.

لكون الحسابات في نظراً هذه النوى بواسطة تقريب بورن للموجة المستوية. بروتونات عوامل التشكل المرنة لتحليل نتائج 

ط على أنموذج نموذج العنقودي الثنائي لايميز بين البروتونات والنيوترونات لذلك فان حسابات عوامل التشكل اقتصرت فقلأا

 القشرة ذو الترددين.

لوبر باستخدام توزيع الكثافة للحالة گالمقاطع العرضية للتفاعل لهذه النوى عند الطاقات العالية تم دراستها باستخدام نموذج 

طع المنفردة. ان حسابات المقاللجسيمة  اوسگالارضية للنواة القذيفة والهدف، حيث ان هذه الكثافات توصف بواسطة دوال 

 العرضية للتفاعل تتفق بشكل جيد مع القيم العملية.
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Introduction 

Since the discoveries of neutron halo in 

exotic light neutron-rich nuclei in the mid-

eighties [1,2], studies on halo phenomena 

have become a hot point in nuclear physics. 

The cause of halo phenomena lies in both 

the small separation energy of the last few 

nucleons and their occupation on the orbits 

with low angular momentum (l = 0, 1) [3], 

which allow the wave function of the 

valence nucleons to extend to large radii [4]. 

The observation of large total interaction 

cross sections for 11Li, 11Be, and 14Be was 

done by Tanihata et al.  [1] showed that halo 

is probably present in many neutron-rich 

nuclei close to the drip line and initialized 

intensive experimental and theoretical work 

on neutron-rich nuclei. Such a behavior 

shows up also on the proton-rich side of the 

chart of nuclei [4]. But the study of proton-

rich nuclei is scarce as compared with that 

of neutron-rich nuclei. It is believed that it is 

slightly hard for proton-rich nuclei to form 

the halo structure because of Coulomb 

barrier [5], which hinder the proton to 

penetrate into the out region of the nuclear-

core [6].  

The halo nuclei have large neutron excess or 

proton excess where a few outside nucleons 

are very weakly bound. Such halo systems 

are well described by the few body models, 

which assume that halo nuclei consist of a 

tightly bound inner core surrounded by a 

few outer nucleons that are loosely bound to 

it [7]. So the halo nuclei can be divided into 

two types : the two-body halo where one 

nucleon is surrounding the core nucleus, 

such as the one-neutron halo 11Be and the 

one-proton halo 8B; and the three-body halo 

where two valence nucleons are around the 

core nucleus, such as 6He and 11Li [8]. The 

three-body halo have been called Borromean 

because where the two-body subsystems 

(core plus one neutron or the di-neutron) are 

unbound, but the three-body system is 

bound [9, 10]. 

 

The halo nuclei are so short lived that they 

cannot be used as targets at rest. Instead, 

direct reactions with radioactive nuclear 

beam (RNB) can be done in inverse 

kinematics, where the role of beam and 

target are interchanged [11]. 

The electron scattering from nuclei is a 

powerful to investigate the electromagnetic 

structure in stable nuclei. This is because of 

the relatively weak interaction of electron 

with nucleus which is done through the well-

known electromagnetic force. Electron 

scattering from exotic nuclei is not presently 

available; the technical proposal for the 

construction of electron-ion collider at 

GSI/Germany[12] and RIKEN/Japan facility 

[13] will be a great opportunity to study the 

electromagnetic structure of these exotic 

nuclei in the near future. 

Many theoretical and experimental studies 

[14-20] have discussed and confirmed the 

halo structure in 11Be and 15C exotic nuclei.  

The total nuclear reaction cross section  

is one of the most important physical 

quantities characterizing the properties of 

nuclear reaction [21]. It is very useful for 

extracting fundamental information about 

the nuclear size and the density distributions 

of neutrons and protons in nucleus. In 

particular, the neutron halo has been found 

by measuring the total reaction cross section 

induced by radioactive nuclear beams [1, 

22]. The definition of the reaction cross 

section  and the interaction cross 

section  are as follows [23]:  

elatotR    

inelaRI    

where tot , ela  and inela  are the total 

reaction cross section, the elastic scattering 

cross section, and the inelastic scattering 

cross section, respectively. The reaction 

cross section  R  can be described by 

subtracting    the ela   from   the tot .   The  
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interaction cross section  I  is the 

probability of the reaction which the proton 

number and/or the neutron number of the 

projectile particle are changed. The inelastic 

scattering cross section is the probability of 

the reaction in which a projectile nucleus 

and/or a target nucleus is excited due to the 

collision. At high energy (above several 

hundred MeV/nucleon), it is known that the 

R  is approximated by I   IR    

because the contribution of the inelastic 

scattering is low [24, 25]. 

 One of the widely used models for 

analyzing the interaction and the reaction 

cross sections of nucleus-nucleus scattering 

is the Glauber model [26]. A  simple  

Glauber  model  has  had  to  be  used  to  

connect  the  density distributions  and  cross  

sections.  Although  the  model  is  simple,  

it  shows  reasonable  results for  many  

cases [27].  For the reactions of the stable 

and exotic nuclei, agreements have been 

obtained between calculation and 

experimental value for reaction cross section 

by using the simplified Glauber models at 

the incident energy around GeV/nucleon. A 

modified microscopic Glauber theory was 

presented in Refs. [26, 28] in order to 

investigate the reaction projectile-target 

collisions at low and intermediate energies. 

The calculations of reaction cross section by 

using modified microscopic Glauber theory 

at intermediate energies are in good 

agreement with the experimental data, but it 

can only be used to investigate the halo 

nucleus.  

 

Theory 
     The one-body operator of the 

longitudinal transition density for point 

protons (with isospin )2/1zt  or neutrons 

( )2/1zt  is given by [29] 

),(
)(

)(ˆ
,

1
2, kJz rMJ

A

k k

k

z

L

tJ Y
r

rr
te 








 


     (1) 

 

with 

.
2

)(21
)(

kt
te z

z


   

 In Eq. (1), the superscript ( L ) in the 

operator 
L

tJ z,
ˆ
  stands for a longitudinal 

operator, )(, kJ rMJY 


 and )( krr


  are the 

spherical harmonic and Dirac delta 

functions, respectively. The multipolarity 

J  of the transition is restricted by the 

following angular momentum and parity 

selection rules: 

fifi JJJJJ _  

and 
J

fi

 )1(     (for Coulomb transitions). 

     The reduced matrix element of Eq. (1) is 

expressed as [29] 

 

),()(),,,,,(
)12(4

1
)(ˆ

, rRrRjYjtbaJJJOBDM
J

JrJ
bbaaz lnlnbJa

ab

zif

i

i

L

tJf   








       (2)

                                                                                                                                            

where a  and b  label single-particle states 

for the considered shell model space, i.e. 

aaaa mjlna   and ,bbbb mjlnb   

the states iJ  and 
fJ  are characterized 

by the model space wave functions, )(rR
ppln  

is the radial part of the harmonic oscillator  

 

wave function, 
bJa jYj 

 is the reduced 

matrix element of the spherical harmonic, 

),,,,,( zif tbaJJJOBDM   is the proton 

( )2/1zt  or neutron ( )2/1zt  one body 

density matrix element given by the second 

quantization as [29] 
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 
.

12

~

),,,,,(
,,









J

JaaJ

tbaJJJOBDM
i

J

tbtaf

zif

zz   (3)  

     As the model space wave functions have 

good isospin, it is appropriate to evaluate the 

OBDM elements by means of isospin-

reduced matrix elements. The relation 

between these triply reduced OBDM and the 

proton or neutron OBDM of Eq. (2) is given 

by [29] 

 

2/)1(
0

1
6)1(2

2/)0(
0

0
2)1()(





























TOBDM
TT

TT
t

TOBDM
TT

TT
tOBDM

zz

ifTT

z

zz

ifTT

z

zf

zf

 (4)                           

 

where the triply reduced )( TOBDM   

elements are given in terms of the second 

quantization as  

 

1212

~

),,,,,(

,








TJ

aa
TJfiOBDM

i

TJ

f 

  (5)                                                      

Here, Greek symbols are utilized to indicate 

quantum numbers in coordinate space and 

isospace (i.e., ,, ba btat   iii TJ  

and ).fff TJ  

     The )( TOBDM   elements contain all of 

the information about transitions of given 

multipolarities which are embedded in the 

model space wave functions. To obtain these 

OBDM elements, we perform shell model 

calculations by OXBASH code [30] using 

realistic effective interactions.  

     For the ground state density distribution, 

we have 
fibababa JJjjllnn  ,,,  

and ,0J  then Eq. (2) becomes as 

),()(),,,0,,(
)12(4

1

)(ˆ)(

0

,0

rRrRjYjtbaJJOBDM
J

JrJr

bbaa

zz

lnlnba

ab

zii

i

i

L

tJit






 






 (6)                 

where 

.12
4

1
1

4

1

4

1
0 ba jjabababa jjjjjjYj 


 (7)                              

The average occupation number in each 

orbit 
ztan , is given by 

).,,,0,,(
12

12
, zii

i

a

ta taaJJOBDM
J

J
n

z 


 (8) 

     Two approaches are utilized for 

calculating the ground state densities of 

exotic halo nuclei considered in the present 

study, these are (the two frequency shell 

model and the binary cluster model) outlined 

in subsections 1 and 2. 

 

1. The two frequency shell model (TFSM) 

     As the exotic halo nuclei are oversized 

and easily broken systems consisting of a 

compact core plus a number of outer 

nucleons loosely bound and spatially 

extended far from the core, it is suitable to 

separate the ground state matter density 

distribution )(, rmtz
  into two parts. The first 

part is connected to the core nucleons 

)(, rctz
  while the second is connected to the 

valence (halo) nucleons ),(, rvt z
  (for 

simplicity, the subscript zt  in these densities 

will be dropped), i.e.   

).()()( rrr vcm                               (9) 

 

     In TFSM [31,32], the harmonic oscillator 

wave functions (HO) are used with two 

different oscillator size parameters c  (for 

core nucleons) and v  (for halo nucleons). 

This approach permits to work freely on 

each part by changing )(vc  till obtaining a 

fit with experimental data. Furthermore, the 

matter density of Eq. (9) may also be 

expressed as 

),()()( rrr np

m                            (10) 

where )(rp  and )(rn  are the ground 

state proton and neutron densities of halo 

nuclei expressed as 

)()()( rrr p

v

p

c

p                             (11) 

and  

).()()( rrr n

v

n

c

n                              (12) 

The normalization conditions for the ground 

state densities given in Eqs. (9-12) are 
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



0

2 ,)(4 drrrg g                                (13) 

and the corresponding rms radii are 





0

42/12 ,)(
4

drrr
g

r gg 


                    (14) 

where )(rg  corresponds to the one of the 

densities [ ),(rm  ),(rc  ),(rv  ),(rp  

)](rn  and g  corresponds to the number of 

nucleon in each case. 

     Next we use the plane wave Born 

approximation (PWBA) to study the elastic 

electron scattering form factors from 

considered nuclei. In the PWBA, the 

incident and scattered electron waves are 

represented by plane waves. The elastic 

proton form factor is simply given by the 

Fourier-Bessel transform of the ground state 

proton density distribution obtained by 

TFSM, i.e. 

,)()(
4

)(
0

2

0


 drrqrjr
Z

qF p


              (15) 

where )(0 qrj  is the spherical Bessel 

function of order zero and q is the 

momentum transfer from the incident 

electron to the target nucleus. Inclusion the 

corrections of the finite nucleon size 

)4/43.0exp()( 2qqF fs   and the center of 

mass )4/exp()( 22 AqbqFcm   in the 

calculations needs multiplying the form 

factor of Eq. (15) by these corrections. 

     In the limit ,0q  the target nucleus 

will be characterized as a point particle. 

Accordingly, using Eq. (13) with the help of 

Eq. (9), the proton form factor of the target 

nucleus will be equal to unity (i.e. 

1)0( qF ). 

 

2. The binary cluster model (BCM) 

     In BCM [33], the exotic halo nuclei are 

considered as composite projectiles of mass 

pA  and described, in Fig. 1, as core and 

valence clusters, of masses cA  and vA  

bounded with a state of relative motion. It is 

assumed that .vc AA   For simplicity, the 

internal densities of the clusters are 

described by single Gaussian functions with 

ranges c  and ,v  

),,()(

,),()(

)3(

)3(

rgAr

rgAr

vvv

ccc








                            (16) 

where )3(g  is the normalized 3-dimensional 

Gaussian function 

 

 

.2/3,1),(),/exp(
1

),( 2

)((

2

)(

)3(2

)(

2

3

)(

2/3)(

)3(

vcvcvcvc

vc

vc rrdrgrrg 


  


                         (17)

 

Upon convoluting the intrinsic cluster 

densities with their center of mass (c.m.) 

motions about the c.m. of the projectile, the 

composite projectile density is given by [33] 

),ˆ(),ˆ()( )3()3( rgArgAr vvccP        (18) 

with range parameters 

 

 

.ˆ

,ˆ

2

22
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



























cv

v
cc

cv

c
vv

AA
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A


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                        (19) 
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Fig.1: the two-cluster projectile and target 

coordinates. 

 

The mean squared radius of the composite 

projectile Pr  2  satisfies 

 222222 ˆˆ
2

3
ccvv

P

cv

vvccPP AAr
A

AA
rArArA  

 (20)                      

     This approach provides a projectile 

density with distinct components due to the 

valence and core clusters. Such simple two 

component forms can be employed for 

calculating the density distributions of light 

exotic nuclei and also employed as input to 

optical limit calculations of reaction cross 

sections. However, a particular projectile 

single particle density, described by a given 

( vc AA , ) mass split and choice of the two 

component ranges ( vc  ˆ,ˆ ), does not define 

the underling structure of the projectile. If 

one of the original clusters is pointlike, for 

example ,0v  then fixing v̂  and c̂  

uniquely determines   and hence .c  

 

3. Glauber model calculations of reaction 

cross sections 

In the Glauber model [33], the internal 

motions of the particles within the projectile 

( P ) and target (T ) are assumed slow 

compared to the relative motion of the 

centers of mass of the projectile and target. 

The reaction cross section for a projectile 

incident upon a target is given by [34] 

,1)](1[2
0
















cm

c

R
E

B
dbbTb           (21) 

where is Coulomb barrier,  is the 

kinetic energy in the center of mass system 

and )(bT  is the transparency function at 

impact parameter .b  A straightforward 

calculation of )(bT  is very complicated. 

One of the simplest methods to calculate 

)(bT  is the Optical limit (OL) 

approximation. In this approximation, which 

ignores any correlations between particles in 

the projectile or target, )(bT  is written as the 

squared modulus of the elastic S matrix 

for the projectile-target system [35] 

,)()(
2

bSbT OL

el                                     (22) 

where  

 ,)(exp)( bibS PT

OL

el                             (23) 

and 

 2121213 )()()( rrRfrrrdrddRb NNTPPT


   





 (24)                                                   

is the overlap of the projectile and target 

ground state densities ( P  and ,T  

respectively) with an effective nucleon-

nucleon )(NN  amplitude [ )](rf NN  

integrated along the assumed straight line 

path of the projectile’s center of mass at 

impact parameter .b  For zero-range NN  

amplitude and isospin 0T  target, )(rf NN  

has the form [35] 

)()2/()( rirf NNNN                           (25) 

where NN  is the average of the free 

neutron-neutron )(nn  and neutron-proton 

)(np  total cross section at the energy of 

interest and given as [36] 

TP

npPTnpTPppTPnnTP
NN

AA

ZNZNZZNN 



  (26)                                           

where: 

 : are the neutron number of projectile 

and target, respectively. 
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: are the proton number of projectile 

and target, respectively.  

: are the mass number of projectile 

and target, respectively. 

The nucleon- nucleon cross sections 

( npnnpp and  , ) are given by Charagi 

formula [36] 











85.113
26.2518.18

67.70

67.68
76.804.15

73.13

2

4

2





np

nnpp

(27)                                                                 

where and are expressed in mb 

and . 

Expressing the projectile-target separation in 

cylindrical coordinates ),,( 3RbR


  where  

3z  is the axis chosen along the incident 

beam direction, then [with the help of Eqs. 

(24) and (25)] Eq. (23) gives      

.)()()(
2

exp)( 212121 







  rrbrrrdrdbS z

T

z

P

NNOL

el




 (28)                                           

Integrating over the coordinates 2r  then 

replacing 1r  by ,s  we obtain 

,)()(
2

exp)( 







  sbssdbS z

T

z

P

NNOL

el





(29)                                                                    

where )()( sz

TP  is the z-direction integrated 

nucleon density distribution expressed as 

  .)( 22

)()( dzzss TP

z

TP 




 

 

            (30)                                                                            

     It is obvious from Eq. (29) that the 

calculations of )(bS OL

el  requires only the 

projectile and target ground state densities. 

For simplicity, both densities are described 

by single Gaussian functions with range 

parameters P  and ,T respectively. 

 

Results and discussion 

     The ground state proton, neutron and 

matter densities of exotic one-neutron halo 

nuclei 504(11 nSBe keV, 2/1T 13.81 s) 

[37, 38] and 1218(15 nSC keV, 

2/1T 2.449 s) [37, 38] are studied by means 

of the TFSM [31, 32] and BCM [33].  

     In TFSM, the calculations are based on 

using different model spaces for the core and 

the valence (halo) neutron. The single 

particle harmonic oscillator wave functions 

are employed with two different size 

parameters c  [for core nuclei Be10  

( 1,0, TJ  ) and C14  ( 1,0, TJ  )] and 

v  (for the halo neutron). The valence 

(halo) neutron in Be11  ( 2/3,2/1, TJ  ) 

is assumed to be in a pure 2/11p  while that in 

C15  ( 2/3,2/1, TJ  ) is considered as 

admixture between two configurations 



 
2/12

14 ])0([
2/1 JsvC  and ,])2([

2/11

14

2/5


 
JdvC  

where 
2/12sv  and 

2/51dv  refer to the halo 

neutron  wave functions of 2/12s  and 2/51d . 

The matter density distribution of the halo 

nucleus C15  is obtained by adding the 

density of the core to that of the valence 

(halo) neutron. For simplicity, the density 

distributions of the ground  )1,0,( TJ   

and excited )1,2,( TJ   states of C14  are 

supposed to be the same. The configurations 
6

2/3

4

2/1 )1(,)1( ps and 10

2/12/3

4

2/1 )1,1(,)1( pps  

are assumed for core nuclei Be10  and ,14C  

respectively. For 14C core, the ground state 

average occupation numbers 1p3/2=7.718 

and 1p1/2=2.282, in mixed 10

2/12/3 )1,1( pp , 

are obtained by performing shell model 

calculations using OXBASH code [39] with 

realistical Cohen-Kurath interaction CKI 

[40]. Values of 574.1c  fm and 1.55 fm 

are preferred for core nuclei Be10  and C14 , 

which provide matter rms radii to these core 

nuclei equal to 2.28 fm (for Be10 ) and 2.3 

fm (for C14 ), which are in astonishing 

agreement with the observed rms radii 

02.028.2   fm [41] (for Be10 ) and 

07.03.2   fm [42] (for C14 ). To reproduce 
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the observed matter rms radii of 

05.073.2(11 Be  fm [42]) and 

092.0783.2(15 C  fm [42]), values of 

498.3v  and 3.455 fm are selected for 

Be11  and ,15C  respectively. The above 

values of v  and c  provide results for 

matter rms radii equal to 2.73 fm (for Be11 ) 

and 2.783 fm (for C15 ), which are in 

excellent agreement with those of observed 

values. 

     In BCM [33], the halo nucleus is 

considered as a composite projectile 

consisting of core and valence clusters 

bounded in a state of relative motion [Fig.1]. 

The internal densities of the clusters, given 

by Eq. (16), are described by single particle 

Gaussian wave functions. The composite 

projectile densities of Be11  and C15  are 

calculated by Eq. (18). 

     Figure 2 shows the calculated matter 

density distributions (solid lines) obtained 

via TFSM [Figs. 2(a) and 2(c)] and BCM 

[Figs. 2(b) and 2(d)]. The top and bottom 

panels correspond to halo nuclei Be11  and 

,15C  respectively. The contributions of the 

core (dashed lines) and the halo neutron 

(dash-dotted lines) to the matter densities are 

also shown in these figures. The 

experimental matter densities of Be11  [43] 

and C15  [19] are displayed by shaded areas, 

for comparison. The solid lines in Figs. 2(a) 

and 2(b), which correspond to the halo 

nucleus ,11Be  agree well with the 

experimental data and show almost the same 

degree of accordance with the data. The 

solid lines in Fig. 2(c) (calculated by 

considering mixing configurations with 

occupation probabilities of 0.55 in 2/12s  and 

0.45 in 2/51d  for the halo neutron) and 2(d) 

agree reasonably the experimental data. 

Moreover, the solid line in Fig. 2(d) is better 

describing the data than that in Fig. 2(c). 

The long tail behavior (which is a distinctive 

feature of halo nuclei) is revealed in all solid 

lines of Figs. 2(a), 2(b), 2(c) and 2(d), which 

is in agreement with the experimental data. 

     Fig. 3 demonstrates the results as in Fig. 

2 but for the calculated proton and neutron 

density distributions displayed as dashed 

and dash-dotted lines, respectively. The long 

tail performance is clearly noticed in the 

dash-dotted lines. This performance is 

associated to the existence of the outer 

neutron in the halo orbits. The steep slope 

performance is obviously observed in the 

dashed lines due to the absence of protons in 

the halo orbit, where all protons of these 

nuclei are found in its core only. The 

difference between the calculated neutron 

and proton rms radii is 

77.022.299.2  pn RR  fm for Be11  

and 79.028.207.3  pn RR  fm for 

.15C  This difference gives an supplementary 

support for the halo structure of these nuclei. 

     Fig. 4 exhibits the comparison between 

the calculated matter density distribution of 

the halo nucleus Be11  ( C15 ) (displayed as 

solid line) and that of a stable nucleus Be9  

( C12 ) (displayed as dashed line). The size 

parameter of the harmonic oscillator radial 

wave function 661.1  fm ( 572.1  fm) 

is utilized for a stable nucleus Be9  ( C12 ) to 

reproduce the observed matter rms radius 

2.38 fm (2.31 fm) of this nucleus. The 

calculated densities in Figs. 4(a) and 4(c) 

[obtained via TFSM] are compared with 

corresponding densities in Figs. 4(b) and 

4(d) [obtained via BCM]. It is clear from 

these figures that the solid and dashed lines 

are diverse. As the outer neutron in Be11  

( C15 ) is weakly bound, the solid line has a 

longer tail than that of the dashed line. 

Figures 2 and 3 provide the conclusion that 

the halo phenomenon in Be11  and C15  is 

connected to the outer neutron but not to the 

core nucleons. 
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Fig.2: The calculated matter density distributions obtained via TFSM [Figs. (a) and (c)] and BCM 

[Figs. (b) and (d)]. The top and bottom panels correspond to halo nuclei Be11
 and ,15C  

respectively. The shaded area shows the experimental matter density distribution of 11Be [43] and 
15C [19]. 
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Fig.3: Neutron, proton and matter density distributions obtained via TFSM [Figs. (a) and (c)] and 

BCM [Figs. (b) and (d)]. The top and bottom panels correspond to halo nuclei Be11
 and ,15C  

respectively. 
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Fig.4: The comparison between the calculated matter density of unstable and stable nuclei. The 

left and right columns correspond to the calculations of TFSM and BCM, respectively. The top 

and bottom panels correspond to ( ,9Be Be11
) and ( C12

, C15
), respectively.  
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   Elastic electron scattering proton form 

factors, which are simply given as Fourier 

transform of the ground state proton density 

distributions, for these halo nuclei are also 

calculated via the plane wave born 

approximation (PWBA). As the calculations 

in the BCM do not distinguish between 

protons and neutrons, the calculations of the 

proton form factors are restricted only by the 

TFSM. 

     Fig. 5 illustrates the comparison between 

the calculated 0C  elastic proton form factors 

of halo nuclei (solid lines) and those of 

stable nuclei (dashed lines). The calculated 

proton form factors in Figs. 5(a) and 5(b) 

correspond to ( BeBe 911 , ) and ( CC 1215 , ) 

nuclei, respectively. The proton form factor 

is independent on detailed properties of the 

neutron halo. The major difference between 

the calculated form factor of the halo 

nucleus Be11  ( C15 ) and that of a stable 

nucleus Be9  ( C12 ) is the difference in the 

center of mass correction which depends on 

the mass number and the size parameter   

which is assumed in this case equal to the 

average of c  and βv In Fig. 5(a) [Fig. 

5(b)], each of the solid line and the dashed 

line has one diffraction minimum located at 

momentum transfer 096.2q  fm-1 for Be9  

and at 215.2q  fm-1 for Be11  [ 940.1q  

fm-1 for C12  and at 962.1q  fm-1 for C15 ] 

and one diffraction maximum located at 

423.2q  fm-1 for Be9  and at 587.2q  fm-

1 for Be11  [ 251.2q  fm-1 for C12  and at 

340.2q  fm-1 for C15 ]. The location of the 

minimum of the halo Be11  ( C15 ) has 

forward shift as compared with the 

minimum of a stable Be9  ( C12 ). 

     The reaction cross sections ( R ) are 

studied by means of the Glauber model with 

an optical limit approximation at high 

energies for ( Be11  and C15 ) projectiles  

incident on the C12  (rms radius= 02.031.2   

[42])  target using the ground state densities 

of these nuclei. The densities of the 

projectile and target are described by single 

Gaussian functions with range parameters 

P  and T  for projectile and target nuclei, 

respectively. The calculated reaction cross 

sections are listed in table 1 along with the 

corresponding experimental data taken from 

[42].  The calculated R  at 790 MeV for 

CBe 1211   system is 946 mb, which agrees 

well with the corresponding experimental 

data 8942  mb [42] within quoted error. 

The calculated R  at 730 MeV for CC 1215   

system is 1022 mb, which agrees reasonably 

with the analogous measured data 10945  

mb [42]. 

 

 

Table 1: Calculated reaction cross sections for 11Be and 15C exotic nuclei. 

Exotic 

Nuclei 

Experimental rms radii 

(fm) 
Calculated R  

(mb) 

Experimental R  

(mb) 

Energy (MeV) 

11Be 2.73±0.05 [42] 946 942±8 [42] 790 
15C 2.783±0.092 [42] 1022 945±10 [42] 730 
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Fig.5: The comparison between the calculated proton form factors of unstable (exotic) nuclei 

).C12
,Be9

) and those of stable nuclei (C15
,Be11

( 

 

Conclusions 

     The ground state proton, neutron and 

matter densities of exotic one-neutron halo 

nuclei Be11  and C15  are studied by means of 

the TFSM and BCM. The long tail 

performance, presumed as a typical property  

for the halo structure, is clearly revealed in 

the calculated neutron and matter density 

distributions of these exotic nuclei. 

Moreover, the noticeable difference which is 

found between the calculated overall neutron 

and proton rms radii as well provides a 

supplementary support for the halo structure 

of these nuclei.  

     Elastic electron scattering proton form 

factors for these exotic halo nuclei are also 

studied using the TFSM. It is found that the 

major difference between the calculated 

form factor of unstable exotic nucleus Be11  

( C15 ) and that of a stable nucleus Be9  ( C12 ) 

is the difference in the center of mass 

correction which depends on the mass 

number and the size parameter ,  which is  

 

 

assumed in this case equal to the average of 

c  and .v  

     The reaction cross sections for these 

exotic nuclei are studied by means of the 

Glauber model with an optical limit 

approximation using the ground state 

densities of the projectile and target, where 

these densities are described by single 

Gaussian functions. The calculated reaction 

cross sections at high energy are in 

agreement with the measured data. 

     The analysis of the present study suggests 

that the structure of the halo neutron for 

Be11  is a pure 2/11p  configuration while that 

for C15  is mixed configurations with 

dominant ( 2/12s ). 
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