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Abstract Key words 

  The experimental proton resonance data for the reaction P+
48

Ti 

have been used to calculate and evaluate the level density by 

employed the Gaussian Orthogonal Ensemble, GOE version of RMT, 

Constant Temperature, CT and Back Shifted Fermi Gas, BSFG 

models at certain spin-parity and at different proton energies. The 

results of GOE model are found in agreement with other, while the 

level density calculated using the BSFG Model showed less values 

with spin dependence more than parity, due the limitation in the 

parameters (level density parameter, a, Energy shift parameter, E1and 

spin cut off parameter, σc). Also, in the CT Model the level density 

results depend mainly on two parameters (T and ground state back 

shift energy, E0), which are approximately constant in their behavior 

with the proton energy compared with GOE model. The RMT 

estimation used to calculate the corrections of the incompleteness 

proton resonance measurement data by using two methods; the 

conventional analysis method, which depends on the resonance 

widths and the updated, developed, tested and applied a new analysis 

method, which depends mainly on the resonance spacings. The 

spacing analysis method is found much less sensitive to non-

statistical phenomena than is the width analysis method. Where the 

analysis of a given data set via these two independent analysis 

methods indicated the increasing in the reliability of the 

determination of the missing fraction of levels, the observed fraction 

f between 0.87
+0.13
−0.11

 – 0.68
+0.12
−0.12

 for different spin-parity of this 

reaction and then the distinguishability in the level density 

calculations can be achieved. The modified Porter Thomas 

distribution along with the maximum likelihood function have been 

used to get the missing levels corrections for 5 proton resonance 

sequences in the present reaction. To estimate the present long-range 

correlations for pure sequence of levels the mean square of the 

deviation of the cumulative number of levels from a fitted straight 

line represented by the Dyson and Mehta Δ3 statistic has been 

employed for spin parity 
1

2

+
, and calculated the <Δ3>  against the 

cumulative number of proton levels. 

Level density, proton 

resonance, GOE 
version RMT model, 

CT and BSFG 

models, NNSD, 
modified porter 

Thomas distribution. 
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+P) تقييم كثافة المستوي لبروتون يحرض رنين نووي للتفاعل 
48

Ti)باستخدام نماذج متعددة 

 مهدي هادي جاسم, هدى زهير امين

 قسم الفيزياء, كلية العلوم, جامعة بغداد

 الخلاصة

+Pاستخدمت بيانات رنين البروتون العملية للتفاعل       
48

Ti   لحساب وتقييم كثافة المستوي باستخدام نماذج

GOE  ,مجاميع جاوس المتعددة BSFG الازاحة الخلفية لغاز فرمي و CT النموذج الثابت لدرجة الحرارة, عند

تتوافق مع الاخرين لنفس النموذج , بينما  GOE تماثل معين ولطاقة بروتون متغيرة. وجد ان نتائج نموذج–برم 

ذات قيم اقل اعتمادا على البرم اكثر من التماثل وذلك بسبب  BSFGي المحسوبة لنموذج بينت كثافة المستو

أعتمد نتائج كثافة المستوي اساسا على CT . كذلك, عند النموذج (a, E1 and σc)المحددات في المعلمات 

. في GOE, والتي وجدت ان قيمها ثابتة التصرف مع طاقة البروتون مقارنة مع نموذج (T and E0)المعلمات 

باستخدام طريقتين:  استخدم حساب تصحيحات البيانات المقاسة لرنين البروتون غير المتكاملة  RMTتقدير 

لمحور والذي وجد ان الاولى طريقة التحليل الاعتيادية والتي تعتمد على عرض الرنين والثانية التحليل المطور وا

طريقة التحليل الفضائي اقل حساسية الى الظاهرة غير الاحصائية منها الى طريقة تحليل العروض. بينما بين 

التحليل لمجموعة البيانات باستخدام هذه الطريقتين امكانية ايجاد الجزء المفقود من المستويات, حيث لوحظ ان 

0.87 الجزء المرئي ضمن حدود
+0.13
−0.11

 – 0.68
+0.12
−0.12

تماثل مختلف لهذا التفاعل ومنها يمكن تمييز -الى برم 

ثوماس المعدل مع دالة الاحتمالية العظمى لإيجاد -تم استخدام توزيع بورترامكانية حساب كثافة المستوي. 

زم تصحيحات مستويات مفقودة ولسلسلة متكونة من خمس رنين بروتون  في التفاعل الحالي. لغرض تقدير التلا

تماثل -لنموذج برم Δ3الطويل لسلسلة نقية من المستويات الرنينية تم الاستعانة بإحصاء مهاتا 
1

2

+
مع العدد الكلي   

 لمستويات البروتونات الجديدة.

 

 

Introduction 

     Nuclear level densities (NLDs) are 

of special importance in predicting the 

distribution of all excited levels of a 

nucleus that presents a great challenge 

to our understanding of this 

complicated quantum system, 

compound nucleus. On the other hand, 

NLDs represent a very important 

ingredient in statistical model 

calculations of nuclear reaction cross 

section, which are needed in many 

applications from astrophysical 

calculations (determining thermos-

nuclear rates for nucleosynthesis) to 

fission or fusion reactor designs [1]. 

The theoretical research of level 

density started with the pioneering 

work of Bethe [2]. He has obtained a 

simple level density formula for a gas 

of non-interacting fermions with 

equally spaced non degenerate single 

particles. This formula based on the 

Fermi gas or the so- called Back 

Shifted Fermi Gas model (BSFG) and 

simple counting arguments.  

The independent particle model, in 

which nucleons are assumed to move 

freely in an average potential, has been 

successful predicted the bound state 

structure of various nuclei [3, 4]. In 

this model the odd-even effects are 

included by means of a pairing energy 

shift, and one can solve the equation 

and determine the nuclear levels. 

 However, as the excitation energy is 

increased, the number of possible 

configurations becomes very large, and 

the exact solution of the Schrodinger 

equation is become difficult. It is under 

these circumstances the quantum 

structure also is very complicated (i.e. 

high level density) [5]. The formula 

proposed by Gilbert and Cameron [6] 

combined the BSFG formula at high 

excitation energies with the Constant 

Temperature (CT) formula for lower 

energies. The back-shift parameter E1 

in the BSFG model was replaced by 

the pairing forceV0.  Through fitting 

procedure, the parameters (level 

density parameter (a), back-shift 
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parameter (E1), pairing force (V0), and 

spin cutoff parameter (σC), in both 

regions, are erected to match with the 

experimental data. But from the 

evaluation of these models with the 

experimental work, some of the levels 

are missing, in any experimental data 

set, which cannot explicate the data 

clearly, especially in nucleon 

resonance regions. Therefore, a 

correction method is needed before 

determining the level densities from 

these regions. The standard method for 

the missing level correction involves 

resonance widths, where, from this 

approach one can assume the 

resonance widths obey a Porter-

Thomas distribution (PTD) and that all 

levels below some cut-off widths are 

not observed. This approach works 

fairly well but it has several 

limitations. In order to determine the 

most reliable correction for missing 

levels, an additional method is needed. 

Since the PTD follows from Random 

Matrix Theory (RMT) [7], the nearest 

neighbor spacings idea, for a set of 

states with the same symmetry 

properties that obey the Wigner 

distribution, can be predicted easily by 

RMT. In this theory the widths and 

spacings are not correlated and then 

the analysis of the spacing distribution 

can provide an independent 

determination of the missing fraction 

of levels. 

On the basis of fits to all known bound 

levels up to a certain energy and to the 

resonance region level densities of 87 

nuclei, ref [8], and for 310 nuclei, ref 

[1] have been implemented  both the 

BSFG and the CT models work 

equally well in reproducing 

experimental densities. Also, ref [9] 

used nuclear level schemes and 

neutron resonance densities for 75 

nuclides to determine parameter of 

level density formula, the spacing 

distribution of levels with equal spin 

and parities, and spacing correlations. 

They found that the spacing 

distribution lied between the Poisson 

and Wigner distributions. 

In RMT ref [5] applied the width and 

spacing analysis methods to 15 protons 

and 2 neutrons resonance data 

sequences and they observed fraction 

of levels for each sequence. Values for 

level density and strength function for 

each sequence are obtained and the 

spin and parity dependence of the level 

densities is considered. The parity and 

completeness of 
45

Sc data were tested 

via several statistical analyses by [10]: 

the nearest neighbor spacing 

distribution, the reduced width 

distribution and the Dyson-Mehta ∆3 

statistic. The basic concepts of RMT is 

discussed by [11] using the ensemble 

of random matrices originally 

introduced by Wigner, the Gaussian 

ensemble as a starting point. Also, the 

correlation between NLD parameters 

of the BSFG and CT models have been 

investigated by [12, 13] for different 

nuclei and the calculated NLDs have 

been compared with experimental 

works. 

Theoretical models, NLD 

     Understanding the NLD, through 

the calculation of neutron and proton 

capture reaction rates, expanded the 

sight of applications in, say, the 

accelerator-driven transmutation of 

nuclear waste and radio chemical 

analysis [9]. For excitation energies 

not much higher than the neutron 

separation energy, one can use simple 

models with only two parameters for 

the level density, such as the BSFG or 

the CT models [3]. Where, the NLD, 

dependence on the excitation energy E 

and spin J, is assumed to have a 

separable form [1]:  

𝜌(𝐸, 𝐽, 𝜋) =
1

2
𝜌(𝐸)𝑓(𝐽)                    (1) 

where f (J) is spin distribution function 

in terms of spin cutoff parameter σc, 

and it is given by: 

𝑓(𝐽) = 𝑒−𝐽2 2𝜎𝑐2⁄ − 𝑒[−(𝐽+1)2 2𝜎𝑐2]⁄   (2) 
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The BSFG and CT models 

The simplest system which does not 

have equidistant levels is the Fermi gas 

(FG) system, where the single particle 

level density increases with the square 

root of the kinetic energy of the 

particles. This model historically had 

the largest impact on the interpretation 

of experiments that was used by Bethe 

[1]. The  BSFG formula was proposed 

by many authors and also they adopted 

the FG formula with the shifted ground 

state position (∆) and the level density 

parameter (a), as parameters to be 

adjusted to the experimental results 

[14,15] . In this model the level density 

depends on two parameters a andE1: 

𝜌𝐵𝑆𝐹𝐺 (E)=
𝑒2√𝑎(𝐸−𝐸1)

𝜎𝑐 12√2𝑎1\4(𝐸−𝐸1)5\4          (3) 

Where, (E-E1=at
2
) is the effective 

excitation energy [5], t is the 

thermodynamic temperature [14] and 

the spin cut off parameter: 

𝜎𝑐2=0.0888 𝐴
2

3√𝑎(𝐸 − 𝐸1)             (4) 

where A represent the mass number. 

The bound states alone and the bound 

states plus resonance density were also 

fit with the CT model formula relating 

the nuclear temperature (T), which is 

different from the thermodynamic 

temperature (t), to the level 

density[16]: 

ρ
CT

(E) = (
1

T
)e(E−E0) T⁄                      (5)  

where𝐸0 is the back shift energy [1], 

which is based on the C0value, given 

by [9]: 

𝐶0 = −(12 ± 3)𝐴−(0.32±0.05)           (6) 

where, 𝐶0 = 𝐸0 − ∆ 

In the thermodynamically approach, 

the nuclear temperature is defined by 

the relation [17]: 
1

𝑇
=

1

𝜌

𝑑𝜌

𝑑𝐸
= 

1

𝑇
=

1

√𝐸
𝑎⁄

−
5

4𝐸
                         (7) 

 

 

 

 

 

Gaussian orthogonal ensemble 

(GOE) model:  

Width analysis of imperfect 

sequences 

     The Gaussian assumption for the 

distribution of reduced width 

amplitudes leads to the PT distribution 

for the dimensionless strength 

parameter y: 

p(y) =
1

√2πy
e

−y

2                                 (8) 

 

where,  y=𝛾2 < 𝛾2 > ,⁄ 𝛾2 Is the 

reduced width and< 𝛾2 > is the 

average reduced width. 

   One assumes that all levels weaker 

than the weakest observed level are 

missed and that all levels with larger 

widths are observed. A modified PT 

distribution was introduced by Fröhner 

[18]. According to this distribution, the 

smallest widths are most frequent. 

Because these weak levels may not be 

observed, an experimental level 

sequence is usually incomplete, and 

therefore the width distribution is 

distorted. While the absence of weak 

levels causes the sequence to be 

incomplete. There are various other 

effects that also can distort the 

observed width distribution. Non-

statistical phenomena such as doorway 

states can affect the sequence. Another 

cause is spin misassignments. This 

leads to an impure sequence, which 

will have a different distribution. One 

must consider these effects when 

analyzing the observed resonance 

widths [5]. As shown in Figs. 1-5 the 

experimental observed reduced widths 

and number of proton resonance for 

the reaction P+
48

Ti at different proton 

energy range 3-4 MeV, taken from 

ref[5], for different spin-parity. 

 

 

 

 

 

 



Iraqi Journal of Physics, 2015                                                                     Vol.13, No.27, PP. 102-114 

 

 106 

 

 

 

 

 

  
 

Fig.1: The first figure shows the reduced width, the second figure shows number plot for 

103 observed  
𝟏

𝟐

+
 resonances.

 

 

Fig.2: The first figure shows the reduced width, the second figure shows number plot for 

105 observed  
𝟏

𝟐

−
 resonances at different proton energy. 

 

 
 

 

Fig.3: The first figure shows the reduced width, the second figure shows number plot for 

175 observed  
𝟑

𝟐

−
 resonances at different proton energy. 
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Fig.4: The first figure shows the reduced width, the second figure shows number plot for 

139 observed  
𝟑

𝟐

+
 resonances at different proton energy. 

 

    
 

Fig.5: The first figure shows the reduced width, the second figure shows number plot for 

180 observed  
𝟓

𝟐

+
 resonances at different proton energy. 

 

The standard iterative procedure 

      Most of the levels that are missed 

are below the threshold of 

experimental observability in a 

particular experiment. Therefore, the 

simplest assumption is normally 

adopted. 

One assumes that all of the levels with 

reduced widths smaller than the 

minimum observed reduced width are 

not detected and that all resonances 

with widths larger than the minimum 

value are observed. Usually the cut-off 

parameter y0 is taken to be the smallest 

of all the observed widths divided by 

the average reduced width. The 

observed average reduced width of a 

sequence of given Jπ is 





Nobs

i obs

obs
N1

2

12 
                         (9) 

And the cut-off for that sequence is 

y0=
γ2

min

〈γ2〉obs
                                        (10) 

The observed fraction f of the 

sequence is obtained by 

1-f =∫ 𝑃(𝑦)𝑑𝑦
𝑦0

0
                             (11) 

Where P(y) is the PT distribution and 

(1 – f) is the fraction of levels missed. 

The number of observed levels Nobs 

must be corrected by this missing 

fraction. The corrected number Nnew is 

closer to the true number of levels. 

N
(E

) 
N

(E
) 

EP(keV) EP(keV) 

EP(keV) EP(keV) 

ɣ
2
(k

eV
) 

ɣ
2
(k

eV
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Because of missing levels, the 

observed strength is smaller than the 

actual strength. The observed strength 

fs can be found from 

1 –𝑓𝑠 = ∫ 𝑦 𝑃(𝑦)𝑑𝑦
𝑦0

0
                    (12) 

The observed strength should be 

corrected by 1-𝑓𝑠  giving a new value 

for the strength. The next step is to 

calculate the average reduced width 

with the new strength and the new 

number of levels. Then one can 

recalculate the cut-off for the sequence 

using a new average reduced width, 

recalculate 1 - f and 1 - 𝑓𝑠  with the new 

cut-off, and then repeat the entire 

process. This procedure is repeated 

until the missing fraction approaches a 

constant. Because the missing fraction 

is obtained with several iterations, this 

method is called the iterative method. 

A new corrected number of levels in 

the sequence are determined from 

Nnew =
Nobs.

f
                                   (13) 

and the total strength is corrected 

∑ γ
i
2 =

∑ γi
2

obs

fs
                                (14) 

 These values are used to determine a 

new average reduced width 

〈γ2〉new =
∑ γi

2

Nnew
                              (15) 

 Using this new average reduced width, 

a new value of y0 is defined, and the 

above steps are repeated.After a few 

iterations a constant value of 1 - f is 

obtained. 

The corrected number of levels is 

 N=
𝑁𝑜𝑏𝑠

𝑓
                                           (16) 

One can determine the average level 

spacing D or level density ρ from [5, 

20]: 

D = 
1

𝜌
=

𝐸𝑚𝑎𝑥−𝐸𝑚𝑖𝑛

𝑁−1
                          (17) 

Spacing analysis method 

     The nearest-neighbor spacing's 

distribution of a perfect GOE sequence 

(NNSD) are described by the Wigner 

distribution 

𝑃𝐺𝑂𝐸(x)=
𝜋

2
𝑥𝑒−𝜋𝑥2 4⁄                       (18) 

Here𝑥 ≡ 𝑆/𝐷, where S is spacing 

between adjacent levels and D is the 

average spacing.  

The experimental value of the average 

spacing Dobs differs from the true value 

D according to D= f Dobs, where f is the 

fraction of levels observed 

experimentally. We define a variable 

Z≡ Sobs/Dobs, where Sobs is spacing 

between adjacent observed levels, and 

Dobs is the average observed spacing. 

The variables x and z are related by       

z = f x. 

The spacing distribution for NNSD can 

be written as: 

𝑃(𝑧) = ∑ 𝑎𝑘
∞
𝑘=0 𝜆P (k;𝜆𝑧)              (19) 

The parameters 𝑎𝑘give the relative 

contributions of the k-th NNSD P 

(k;𝜆𝑧), λ is a parameter that 

characterizes the incompleteness of the 

sequence. Therefore, from the 

constraints of the parameter 𝑎𝑘 =
𝑓(1 − 𝑓)𝑘and λ = 1/f and the equation 

(19) become: 

P(x) = ∑ f(1 − f)kp(k; x)∞
k=0          (20) 

For f = 1 this reduces to the Wigner 

distribution P (0; x), Eq. (18), [21]. 

The integrated level density N(E) or 

cumulative number of proton levels 

can be written as [5]: 

 𝑁(𝐸) = ∫ 𝜌(𝐸)𝑑𝐸 = exp (𝐸 −
𝐸

0

 𝐸0) 𝑇 − exp (− 𝐸0 𝑇) + 𝑁0⁄⁄        (21) 

The maximum likelihood (MLH) 

method 

     Now we are going to seek the value 

of the parameter vector that maximizes 

the likelihood function (MLF) [22], 

through considering the uncertainty in 

the missing fraction a modified Porter- 

Thomas distribution, 

 

Pf(y) = {
0                                  ∶ y < y0

1

erfc(√y0 2)⁄

e−y 2⁄

√2πy
       ∶ y ≥ y0

                                               

(22) 

This distribution goes to zero at values 

of y≤ 𝑦0, reflecting the assumption 

that weak levels are not observed, and 

becomes the Porter-Thomas 
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distribution when y≥ 𝑦0. We will refer 

to this distribution as the truncated 

Porter-Thomas distribution. The 

truncated Porter-Thomas distribution is 

normalized to unity when integrated 

over 𝑦 = [𝑦0, ∞]. With this distribution 

one can construct the MLF as: 

L = ∏ P(yii )                                   (23) 

where 𝑦 =
𝛾2

〈𝛾2〉
, the uncertainty in 〈𝛾2〉 

is obtained by calculating the MLF or 

equivalently the maximum of the 

natural logarithm of the function 

(MNLF) which  is located at the most 

likely value of〈𝛾2〉. The MNLF is 

normalized to unity and the value 

of〈𝛾2〉 where the normalized likelihood 

function (𝑙𝑛𝐿)𝑛𝑜𝑟𝑚 equals to one half 

of its maximum value is used for a 

determination of the uncertainty 

in 〈𝛾2〉, which in turn is used for the 

uncertainty in f [5]. 

The ∆𝟑 statistic 

       The Δ3 statistic developed by 

Dyson and Mehta is a popular measure 

of long-range correlations. It is defined 

as the mean square of the deviation of 

the cumulative number of levels from a 

fitted straight line [23]: 

∆3(𝐿) ≡
1

𝐿
< min𝑎,𝑏 ∫ 𝑑𝐸

𝑥0+𝐿

𝑥0
[𝑁(𝐸) −

𝑎𝐸 − 𝑏]2 >                                     (24) 

where the average is over the starting 

points 𝑋0. 
The Δ3 (L, x) have been computed in 

the present work for each starting point 

ranging over the entire spectrum, and 

average over them. This has been done 

with idea that different intervals are 

considered do not overlap as to ensure 

that each contribution to the average is 

statistically independent [11,24]. 

Results and discussion  

      To ensure the evaluation of the 

GOE, CT and BSFG models, the 

experimental data of ref.[5] for the 

reaction P+
48

Ti at certain spins, have 

been used and compared the calculated 

level density with these models. 

As shown in table 1 the level densities 

for P+
48

Ti width analysis have been 

investigated accurately using the GOE, 

CT and BSFG models. Where the GOE 

Model compared with refs [5,19] 

results and they are closed to each 

other with small errors mentioned in 

Table 1.The data has been sketched in 

fig. 6A and B, where the level densities 

for positive and negative parity are 

indicated by colored points. While the 

level density calculated by BSFG 

Model, with two parameters (a and E1) 

and another parameter (σc) 

dependence, shows less values with 

spin dependence more than parity. 

Also, in the CT Model the level 

density results, depends on two 

parameters (T and E0) are 

approximately constant in their 

behavior with the proton energy, as 

shown in Fig.6 (A and B). 

 
Table 1: Level densities for P+

48
Ti via width analysis (GOE), constant temperature and 

back shifted Fermi gas model. 

𝝆𝐁𝐒𝐅𝐆 

(𝑴𝒆𝑽)−𝟏 

𝝆𝐂𝐓 

(𝑴𝒆𝑽)−𝟏 

𝝆𝐆𝐎𝐄 

[5] 

𝝆𝐆𝐎𝐄 

(𝑴𝒆𝑽)−𝟏[19] 

𝝆𝐆𝐎𝐄 

(𝑴𝒆𝑽)−𝟏(𝑷𝑾)∗ 

𝑬𝐏range 

(MeV) 

𝑵𝐨𝐛𝐬 

[5] 

𝑱𝝅 

[5] 

50.168±17.39 15.416±17 152±13 151±10 152±20 3.0850-3.8574 103 1 2⁄ +
 

50.138±17.38 15.409±15 159±17 166±16 168±34 3.0802-3.8568 105 1 2⁄ −
 

74.627±26.86 15.427±26 295±22 308±21 314.5±27 3.0873-3.8584 175 3 2⁄ −
 

73.134±26.38 15.229±15 251±22 254±21 271±88 3.0913-3.8395 139 3 2⁄ +
 

68.316±26 15.438±15 313±24 318±21 339±39 3.0816-3.8595 180 5 2⁄ +
 

(𝐩𝐰)∗: Present work 
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       A 

 

   B 
       Fig.6: A- The J

π
 dependence of level density in P+

48
Ti for GOE, BSFG and CT 

models. B- The level density as a function of the excitation energy for CT and BSFG 

models. 

The proton induced nuclear resonance 

has been studied according to the 

predictions of the GOE version of 

RMT. The RMT estimation used to 

calculate the corrections to the nucleon 

resonance data. As no measurement is 

without errors, data must be corrected 

for the incompleteness of the 

measurement. Two ways are used in 

the present work, the first one is to 

upgrade the conventional analysis 

method depends on the resonance 

widths. In the second one a 

development, testing and applying 

anew analysis method depends on the 

resonance spacing. When the two 

methods disagree, it is best to consider 

the data on a case-by-case basis. 

However, the     spacing          analysis  

method is much less sensitive to non-

statistical phenomena than the width 

analysis method. Analysis of a given 

data set via these two independent 

analysis methods increased the 

reliability of the determination of the 

missing fraction of levels. 

Conclusions 
    Since the widths follow the porter 

Thomas distribution, the weakest 

widths cannot be seen easily in 

experiments; therefore, this 

distribution can be rearranged to 

indicate the errors in data. Using the 

modified porter Thomas distribution 

along with the maximum likelihood 

function, one can get the missing levels 

corrections for 5 proton resonance 

sequences in the present reaction. 
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During the systematic calculated 

procedures and keeping in mind the 

existing of the possible effects of 

spurious levels, one might be tempted 

to accept the missing fraction idea, 

which determined from the NNSD. 

This gives an observed fraction f 

between 0.87+0.13
−0.11

 – 0.68+0.12
−0.12

 , for 

different spin-parity of this reaction, as 

shown in Figs.7 and 8. This was 

agreeing with refs [5, 19]. The new 

cumulative number of proton levels as 

a function of proton energy of the p+
48

 

Tireaction for different J
π
 shown in 

Fig.9, where the red line shows the 

expected behavior if the average 

spacing over the entire energy range 

was equal to its value in the range Ep = 

9.8-10.6 MeV. The mean square of the 

deviation of the cumulative number of 

levels from a fitted straight line 

represented by the Dyson and Mehta 

Δ3 statistic, which is measured the 

long-range correlations for pure 

sequence of levels. Typical sketches 

shown in Fig. 10 for Δ3 against L, for 

spin parity 
1

2

+
, and the <Δ3> against the 

cumulative number of proton levels. 

 
                 

                           A                                                                   B 

 

 
                                 C                                                               D 

Fig.7: A- The cumulative probability of reduced widths for p +
48

Ti (
𝟏

𝟐

+
) resonances as a 

function of the dimensionless parameter y and compared with the truncated Porter-Thomas 

result (red dashed curve). B- The truncated Porter-Thomas distribution. C- The probability 

distribution for virtual value of x (red dashed curve) and compared it with the calculated x 

(black solid curve). D- The MLF as a function of the observed fraction (f) of levels.

ʃP
(y

)d
y
 

y = ɣ2/‹ɣ2› y = ɣ2/‹ɣ2› 
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                                A                                                             B 

 
                                C                                                                D 

Fig.8: A- The cumulative probability of reduced widths for p +
48

Ti (
𝟑

𝟐

−
) resonances as a 

function of the dimensionless parameter y and compared with the truncated Porter-Thomas 

result (red dashed curve). B- The truncated Porter-Thomas distribution. C- The probability 

distribution, Wigner distribution, for virtual value of x (red dashed with the calculated x 

(black solid curve). D- The MLF as a function of the observed fraction (f) of levels. 

 
                                 A                                                                  B 
Fig.9: The cumulative number of proton levels as a function of proton energy for p+

48
Ti 

reaction compared with observed number of proton resonances and for different  J
π
, 

(A) 
𝟏

𝟐

+
,and  (B) 

𝟑

𝟐

−
. 

 

y = ɣ2/‹ɣ2› y = ɣ2/‹ɣ2› 
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                                 A                                                               B 

Fig.10: A - The Δ3 statistics of Gaussian orthogonal ensemble as a function of L, B-The 

average value of Δ3 as a function of new number of levels. 
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