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Abstract Key words

The experimental proton resonance data for the reaction P+*Ti Level density, proton
have been used to calculate and evaluate the level density by resonance, GOE
employed the Gaussian Orthogonal Ensemble, GOE version of RMT,  Version RMT model,
Constant Temperature, CT and Back Shifted Fermi Gas, BSFG CT and BSFG
models at certain spin-parity and at different proton energies. The mog?fl.s’ dNNSD’
results of GOE model are found in agreement with other, while the ?ﬁo%i dFi);)trrE(E)rlJtion
level density calculated using the BSFG Model showed less values '
with spin dependence more than parity, due the limitation in the
parameters (level density parameter, a, Energy shift parameter, E;and o
spin cut off parameter, o). Also, in the CT Model the level density Article info.
results depend mainly on two parameters (T and ground state back ~Received: Apr. 2015
shift energy, Eo), which are approximately constant in their behavior Accepted: Jun. 2015
with the proton energy compared with GOE model. The RMT Published: Sep. 2015
estimation used to calculate the corrections of the incompleteness
proton resonance measurement data by using two methods; the
conventional analysis method, which depends on the resonance
widths and the updated, developed, tested and applied a new analysis
method, which depends mainly on the resonance spacings. The
spacing analysis method is found much less sensitive to non-
statistical phenomena than is the width analysis method. Where the
analysis of a given data set via these two independent analysis
methods indicated the increasing in the reliability of the
determination of the missing fraction of levels, the observed fraction

+0.13 +0.12 . . . .
f between 0.87_0.11 - 0.68_0.12 for different spin-parity of this

reaction and then the distinguishability in the level density
calculations can be achieved. The modified Porter Thomas
distribution along with the maximum likelihood function have been
used to get the missing levels corrections for 5 proton resonance
sequences in the present reaction. To estimate the present long-range
correlations for pure sequence of levels the mean square of the
deviation of the cumulative number of levels from a fitted straight
line represented by the Dyson and Mehta Aj statistic has been

+
employed for spin parity % , and calculated the <As> against the
cumulative number of proton levels.
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Introduction The independent particle model, in
Nuclear level densities (NLDs) are which nucleons are assumed to move
of special importance in predicting the freely in an average potential, has been
distribution of all excited levels of a successful predicted the bound state
nucleus that presents a great challenge structure of various nuclei [3, 4]. In
to our understanding of this this model the odd-even effects are
complicated quantum system, included by means of a pairing energy
compound nucleus. On the other hand, shift, and one can solve the equation
NLDs represent a very important and determine the nuclear levels.
ingredient  in  statistical  model However, as the excitation energy is
calculations of nuclear reaction cross increased, the number of possible
section, which are needed in many configurations becomes very large, and
applications from astrophysical the exact solution of the Schrodinger
calculations  (determining thermos- equation is become difficult. It is under
nuclear rates for nucleosynthesis) to these circumstances the quantum
fission or fusion reactor designs [1]. structure also is very complicated (i.e.
The theoretical research of level high level density) [5]. The formula
density started with the pioneering proposed by Gilbert and Cameron [6]
work of Bethe [2]. He has obtained a combined the BSFG formula at high
simple level density formula for a gas excitation energies with the Constant
of non-interacting fermions with Temperature (CT) formula for lower
equally spaced non degenerate single energies. The back-shift parameter E1
particles. This formula based on the in the BSFG model was replaced by
Fermi gas or the so- called Back the pairing forceV,. Through fitting
Shifted Fermi Gas model (BSFG) and procedure, the parameters (level
simple counting arguments. density parameter (a), back-shift
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parameter (E;), pairing force (Vo), and
spin cutoff parameter (oc), in both
regions, are erected to match with the
experimental data. But from the
evaluation of these models with the
experimental work, some of the levels
are missing, in any experimental data
set, which cannot explicate the data
clearly, especially in  nucleon
resonance  regions. Therefore, a
correction method is needed before
determining the level densities from
these regions. The standard method for
the missing level correction involves
resonance widths, where, from this
approach one can assume the
resonance widths obey a Porter-
Thomas distribution (PTD) and that all
levels below some cut-off widths are
not observed. This approach works
fairly well but it has several
limitations. In order to determine the
most reliable correction for missing
levels, an additional method is needed.
Since the PTD follows from Random
Matrix Theory (RMT) [7], the nearest
neighbor spacings idea, for a set of
states with the same symmetry
properties that obey the Wigner
distribution, can be predicted easily by
RMT. In this theory the widths and
spacings are not correlated and then
the analysis of the spacing distribution
can provide an independent
determination of the missing fraction
of levels.

On the basis of fits to all known bound
levels up to a certain energy and to the
resonance region level densities of 87
nuclei, ref [8], and for 310 nuclei, ref
[1] have been implemented both the
BSFG and the CT models work

equally  well in reproducing
experimental densities. Also, ref [9]
used nuclear level schemes and

neutron resonance densities for 75
nuclides to determine parameter of
level density formula, the spacing
distribution of levels with equal spin
and parities, and spacing correlations.
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They found that the spacing
distribution lied between the Poisson
and Wigner distributions.
In RMT ref [5] applied the width and
spacing analysis methods to 15 protons
and 2 neutrons resonance data
sequences and they observed fraction
of levels for each sequence. Values for
level density and strength function for
each sequence are obtained and the
spin and parity dependence of the level
densities is considered. The parity and
completeness of *°Sc data were tested
via several statistical analyses by [10]:
the  nearest  neighbor  spacing
distribution, the reduced  width
distribution and the Dyson-Mehta A3
statistic. The basic concepts of RMT is
discussed by [11] using the ensemble
of random  matrices originally
introduced by Wigner, the Gaussian
ensemble as a starting point. Also, the
correlation between NLD parameters
of the BSFG and CT models have been
investigated by [12, 13] for different
nuclei and the calculated NLDs have
been compared with experimental
works.
Theoretical models, NLD
Understanding the NLD, through
the calculation of neutron and proton
capture reaction rates, expanded the
sight of applications in, say, the
accelerator-driven transmutation of
nuclear waste and radio chemical
analysis [9]. For excitation energies
not much higher than the neutron
separation energy, one can use simple
models with only two parameters for
the level density, such as the BSFG or
the CT models [3]. Where, the NLD,
dependence on the excitation energy E
and spin J, is assumed to have a
separable form [1]:

p(E,J,m) = p(E)f () (1)
where f (J) is spin distribution function
in terms of spin cutoff parameter o,
and it is given by:

Q) = e~J?/20c% _ p[-(U+1)?/20c?] (2)
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The BSFG and CT models
The simplest system which does not
have equidistant levels is the Fermi gas
(FG) system, where the single particle
level density increases with the square
root of the Kinetic energy of the
particles. This model historically had
the largest impact on the interpretation
of experiments that was used by Bethe
[1]. The BSFG formula was proposed
by many authors and also they adopted
the FG formula with the shifted ground
state position (A) and the level density
parameter (a), as parameters to be
adjusted to the experimental results
[14,15] . In this model the level density
depends on two parameters a andE;:

e? a(E-E1)
PBsFG (E):GC 122al\*(E—E1)5\* )
Where, (E-E;=at’) is the effective
excitation energy [5], t is the
thermodynamic temperature [14] and
the spin cut off parameter:

2
0c?=0.0888 43,/a(E — E1) (4)
where A represent the mass number.
The bound states alone and the bound
states plus resonance density were also
fit with the CT model formula relating
the nuclear temperature (T), which is

different from the thermodynamic
temperature (), to the level
density[16]:

per(E) = ()eEE/T (5)

whereE, is the back shift energy [1],
which is based on the Cyvalue, given
by [9]:

CO — _(12 + 3)A—(0.3210.05)
where, Cp = E, — A

In the thermodynamically approach,
the nuclear temperature is defined by

the relation [17]:
1_1dp_1_ 1 5

(6)

(1)
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Gaussian  orthogonal  ensemble
(GOE) model:

Width  analysis of  imperfect
sequences

The Gaussian assumption for the
distribution  of  reduced  width
amplitudes leads to the PT distribution

for the dimensionless  strength
parameter y:

1 -y
p(y) = =e> (8)
where, y=y%/<y?>,y? Is the
reduced width and<y?> is the

average reduced width.

One assumes that all levels weaker
than the weakest observed level are
missed and that all levels with larger
widths are observed. A modified PT
distribution was introduced by Fréhner
[18]. According to this distribution, the
smallest widths are most frequent.
Because these weak levels may not be
observed, an experimental level
sequence is usually incomplete, and
therefore the width distribution is
distorted. While the absence of weak
levels causes the sequence to be
incomplete. There are various other
effects that also can distort the
observed width distribution. Non-
statistical phenomena such as doorway
states can affect the sequence. Another
cause is spin misassignments. This
leads to an impure sequence, which
will have a different distribution. One
must consider these effects when
analyzing the observed resonance
widths [5]. As shown in Figs. 1-5 the
experimental observed reduced widths
and number of proton resonance for
the reaction P+*Ti at different proton
energy range 3-4 MeV, taken from
ref[5], for different spin-parity.
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Fig.1: The first figure shows the reduced width, the second figure shows number plot for

1+
103 observed 5 resonances.
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Fig.2: The first figure shows the reduced width, the second figure shows number plot for

105 observed %_ resonances at different proton energy.
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Fig.3: The first figure shows the reduced width, the second figure shows number plot for

175 observed % resonances at different proton energy.
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Fig.4: The first figure shows the reduced width, the second figure shows number plot for

+
139 observed % resonances at different proton energy.
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Fig.5: The first figure shows the reduced width, the second figure shows number plot for
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180 observed g resonances at different proton energy.

The standard iterative procedure
Most of the levels that are missed
are  below the threshold of
experimental  observability in a
particular experiment. Therefore, the
simplest assumption is normally
adopted.
One assumes that all of the levels with
reduced widths smaller than the
minimum observed reduced width are
not detected and that all resonances
with widths larger than the minimum
value are observed. Usually the cut-off
parameter y, is taken to be the smallest
of all the observed widths divided by
the average reduced width. The

107

observed average reduced width of a
sequence of given J™ is

5 Nobs }/2
<pP>= Z L1 9)
i=1 Nobs
And the cut-off for that sequence is
Yzmin
y0= (Y2>obs (10)
The observed fraction f of the
sequence is obtained by
—_ (Yo
1-£= P(y)dy (11)

Where P(y) is the PT distribution and
(1 — f) is the fraction of levels missed.
The number of observed levels Ny
must be corrected by this missing
fraction. The corrected number N, IS
closer to the true number of levels.



Iragi Journal of Physics, 2015

Because of missing levels, the
observed strength is smaller than the
actual strength. The observed strength
f, can be found from

1f = [;"y PG)dy (12)
The observed strength should be
corrected by 1-f; giving a new value
for the strength. The next step is to
calculate the average reduced width
with the new strength and the new
number of levels. Then one can
recalculate the cut-off for the sequence
using a new average reduced width,
recalculate 1 - fand 1 - f; with the new
cut-off, and then repeat the entire
process. This procedure is repeated
until the missing fraction approaches a
constant. Because the missing fraction
is obtained with several iterations, this
method is called the iterative method.
A new corrected number of levels in

the sequence are determined from
— Nobs.

Nnew - (13)
and the total strength is corrected

Yobs i’
Ty == (14)

These values are used to determine a
new average reduced width
ZYiz

<72)new = m (15)
Using this new average reduced width,
a new value of y, is defined, and the
above steps are repeated.After a few
iterations a constant value of 1 - f is
obtained.

The corrected number of levels is
N:Nobs

; (16)
One can determine the average level
spacing D or level density p from [5,
20]:

_1 — Emax—Emin
D =— = —mar—ma 17)

Spacing analysis method

The nearest-neighbor  spacing's
distribution of a perfect GOE sequence
(NNSD) are described by the Wigner
distribution

Poor ()= 2 xe~™"/* (18)
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Herex =S/D, where S is spacing
between adjacent levels and D is the
average spacing.
The experimental value of the average
spacing Dgps differs from the true value
D according to D= f Dgps, Where f is the
fraction of levels observed
experimentally. We define a variable
Z= Sgps/Dobs, Where Sgps IS Spacing
between adjacent observed levels, and
Dobs IS the average observed spacing.
The variables x and z are related by
z=fx
The spacing distribution for NNSD can
be written as:
P(z) = Yp—oar AP (k;A,) (19)
The parameters a,give the relative
contributions of the k-th NNSD P
(k;A;), 4 is a parameter that
characterizes the incompleteness of the
sequence.  Therefore, from the
constraints of the parameter a; =
f(1—f)*and A = 1/f and the equation
(19) become:
P(x) = Yo f(1 —D*pk;x)  (20)
For f = 1 this reduces to the Wigner
distribution P (0; x), Eq. (18), [21].
The integrated level density N(E) or
cumulative number of proton levels
can be written as [5]:
N(E) = [ p(E)dE = exp(E —
Eq)/T —exp(— Eo/T) + Ny (21)
The maximum likelihood (MLH)
method

Now we are going to seek the value
of the parameter vector that maximizes
the likelihood function (MLF) [22],
through considering the uncertainty in
the missing fraction a modified Porter-
Thomas distribution,

0 'y <YYo

Pf(Y) = 1 e_y/2 .
erieyor oy Y E Yo
(22)

This distribution goes to zero at values
of y<y,, reflecting the assumption
that weak levels are not observed, and
becomes the Porter-Thomas
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distribution when y= y,. We will refer
to this distribution as the truncated
Porter-Thomas distribution. The
truncated Porter-Thomas distribution is
normalized to unity when integrated
over y = [y,, o0]. With this distribution
one can construct the MLF as:
L=TLiP(y)

(23)
2
where y = % the uncertainty in (y2)

is obtained by calculating the MLF or
equivalently the maximum of the
natural logarithm of the function
(MNLF) which is located at the most
likely value of(y2?). The MNLF is
normalized to unity and the value
of(y?) where the normalized likelihood
function (InL),.rm €quals to one half
of its maximum value is used for a
determination of the uncertainty
in (y2), which in turn is used for the
uncertainty in f [5].
The A5 statistic

The A; statistic developed by
Dyson and Mehta is a popular measure
of long-range correlations. It is defined
as the mean square of the deviation of
the cumulative number of levels from a
fitted straight line [23]:

Ay(L) = 7 < ming,, f;;"“ dE [N(E) —
akE — b)? > (24)
where the average is over the starting
points X,.

The Az (L, x) have been computed in
the present work for each starting point

Mahdi Hadi Jasim and Huda Zuhair Ameen

ranging over the entire spectrum, and
average over them. This has been done
with idea that different intervals are
considered do not overlap as to ensure
that each contribution to the average is
statistically independent [11,24].
Results and discussion

To ensure the evaluation of the
GOE, CT and BSFG models, the
experimental data of ref.[5] for the
reaction P+*Ti at certain spins, have
been used and compared the calculated
level density with these models.
As shown in table 1 the level densities
for P+*Ti width analysis have been
investigated accurately using the GOE,
CT and BSFG models. Where the GOE
Model compared with refs [5,19]
results and they are closed to each
other with small errors mentioned in
Table 1.The data has been sketched in
fig. 6A and B, where the level densities
for positive and negative parity are
indicated by colored points. While the
level density calculated by BSFG
Model, with two parameters (a and E1)
and another parameter (o¢)
dependence, shows less values with
spin dependence more than parity.
Also, in the CT Model the level
density results, depends on two
parameters (T and Eo) are
approximately  constant in  their
behavior with the proton energy, as
shown in Fig.6 (A and B).

Table 1: Level densities for P+*Ti via width analysis (GOE), constant temperature and
back shifted Fermi gas model.

J™ | Nobs Eprange PGoE PcGoE PGoE Pcr PssFG

51 | [5] (MeV) (MeV) Y (PW)* | (MeV)1[19] [5] (MeV)~1 (MeV) 1
1/2+ 103 | 3.0850-3.8574 152420 151+10 152413 | 15.416+17 | 50.168+17.39
1/27| 105 | 3.0802-3.8568 168+34 166+16 159+17 | 15.409+15 | 50.138+17.38
3/27| 175 | 3.0873-3.8584 314.5+27 308+21 295+22 | 15.427+26 | 74.627+26.86
3/2% 139 | 3.0913-3.8395 271+88 254421 251+22 | 15.229+15 | 73.134+26.38
5/2% 180 | 3.0816-3.8595 339+39 318+21 313+24 | 15.438+15 68.316+26

(pw)*: Present work
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Fig.6: A- The J* dependence of level density in P+**Ti for GOE, BSFG and CT
models. B- The level density as a function of the excitation energy for CT and BSFG

The proton induced nuclear resonance
has been studied according to the
predictions of the GOE version of
RMT. The RMT estimation used to
calculate the corrections to the nucleon
resonance data. As no measurement is
without errors, data must be corrected
for the incompleteness of the
measurement. Two ways are used in
the present work, the first one is to
upgrade the conventional analysis
method depends on the resonance
widths. In the second one a
development, testing and applying
anew analysis method depends on the
resonance spacing. When the two
methods disagree, it is best to consider
the data on a case-by-case basis.
However, the  spacing analysis

models.
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method is much less sensitive to non-
statistical phenomena than the width
analysis method. Analysis of a given
data set via these two independent
analysis  methods increased the
reliability of the determination of the
missing fraction of levels.

Conclusions

Since the widths follow the porter
Thomas distribution, the weakest
widths cannot be seen easily in
experiments; therefore, this
distribution can be rearranged to
indicate the errors in data. Using the
modified porter Thomas distribution
along with the maximum likelihood
function, one can get the missing levels
corrections for 5 proton resonance
sequences in the present reaction.
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During the systematic calculated
procedures and keeping in mind the
existing of the possible effects of
spurious levels, one might be tempted
to accept the missing fraction idea,
which determined from the NNSD.
This gives an observed fraction f

between 0.87+07% — 0.687012 , for

different spin-parity of this reaction, as
shown in Figs.7 and 8. This was
agreeing with refs [5, 19]. The new
cumulative number of proton levels as
a function of proton energy of the p+*
Tireaction for different J* shown in
Fig.9, where the red line shows the
1
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expected behavior if the average
spacing over the entire energy range
was equal to its value in the range Ep =
9.8-10.6 MeV. The mean square of the
deviation of the cumulative number of
levels from a fitted straight line
represented by the Dyson and Mehta
Az statistic, which is measured the
long-range  correlations for pure
sequence of levels. Typical sketches
shown in Fig. 10 for A; against L, for

+
spin parity% , and the <As> against the
cumulative number of proton levels.

\
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+
Fig.7: A- The cumulative probability of reduced widths for p +*Ti (% ) resonances as a

function of the dimensionless parameter y and compared with the truncated Porter-Thomas
result (red dashed curve). B- The truncated Porter-Thomas distribution. C- The probability
distribution for virtual value of x (red dashed curve) and compared it with the calculated x
(black solid curve). D- The MLF as a function of the observed fraction (f) of levels.
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Fig.8: A- The cumulative probability of reduced widths for p +*Ti (%_) resonances as a

function of the dimensionless parameter y and compared with the truncated Porter-Thomas
result (red dashed curve). B- The truncated Porter-Thomas distribution. C- The probability
distribution, Wigner distribution, for virtual value of x (red dashed with the calculated x
(black solid curve). D- The MLF as a function of the observed fraction (f) of levels.
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Fig.10: A - The 45 statistics of Gaussian orthogonal ensemble as a function of L, B-The
average value of 45 as a function of new number of levels.
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