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Abstract Key words 
     In this paper, the generation of a chaotic carrier by Lorenz model 
is theoretically studied. The encoding techniques has been used is 
chaos masking of sinusoidal signal (massage), an optical chaotic 
communications system for different receiver configurations is 
evaluated. It is proved that chaotic carriers allow the successful 
encoding and decoding of messages. Focusing on the effect of 
changing the initial conditions of the states of our dynamical system 
e.i changing the values (x, y, z, x1, y1, and z1). 
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لورنز تامين الاتصالات بواسطة الاشارات الفوضوية الحاملة باستخدام نموذج  

 رائد كامل جمال، دينا احمد كافي 

 قسم الفيزياء، كلية العلوم، جامعة بغداد، بغداد، العراق 

 الخلاصة
في ھذا البحث، توليد الحاملات الفوضوية بواسطة نموذج لورنز تم دراسته نظريا. تقنية التشفير المستخدمة      

ت مختلفة (الشواش) لأشارة جيبية (الرسالة)، انظمة الاتصالات الفوضويه البصرية لمتسقبلا ھي اخفاء الفوضى
تم تقييمھا. انھا اثبتت ذلك الحاملات الفوضوية السماح بنجاح تشفير وفك التشفير للرسائل المستلمة. بالتركيز على 

  ).z1و  x، y، z، x1، y1(يعني تغيير قيم  ھذا ،تاثير تغيير الشروط الابتدائية لحالات النظام الديناميكي المستخدم
  

Introduction 
     The Lorenz system is one of a few 
standard oscillators commonly used to 
explore chaos [1]. The information can 
be on transmitted by masking it into a 
chaotic signal, the amplitude of the 
message being added to that of the 
carrier [2]. Two chaotic systems can be 
synchronized when they are properly 
coupled [3]. This phenomenon has a 
very good application potential in 
transmission coding [4]. The 
transmission is made by using an 
emergent wave from a laser as a 
chaotic transmitter [5]. The signal is 
attached to a carrier wave which is of a 
chaotic nature and has much higher 
amplitude. This ensures a higher 
degree of difficulty in intercepting and 

decoding. For attaching the signal to 
the carrier chaotic masking, 
modulation and translation can be 
used[6]. The properties of transmission 
and reception of the data as well as the 
synchronization of the lasers can be 
studied by using a pair of master-slave 
lasers. In chaotic masking, message 
signal is simply added to the chaotic 
signal and is transmitted [7]. 
Schematic diagram for chaos masking 
is shown in Fig.1a. Receiver recovers 
the message signal by subtracting 
locally generated chaos signal from 
received signal as shown in Fig.1b [8].  
Chaos communication is an application 
of chaos theory which is aimed to 
provide security in the transmission of 
information performed theory 
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     The first block from this flow chart 
Fig.2 represents the time scale of 
chaotic signal that generated in system 
and it is changeable in any range of 
time. Sequentially the second block 
represent the parameters values of 
Lorenz system that exhibits chaotic 
dynamic, where it positive and limited 
values. The Lorenz system equations 
written in the third block. Finally, the 
initial conditions values of the system, 
these values are very important to 
change chaotic system behavior. 
     To study the synchronization in 
Lorenz model must take two Lorenz 
models, as shown in the  flow chart (2) 
Fig.3 that called (transmitter and 
receiver part) and the term k*(x1-x) 
add to first equation in x scale for 
second Lorenz model, as show, where 
the second Lorenz model (receiver 
part) different the first one (transmitter 

part) in initial conditions in (x1) scale, 
moreover the term k*(x1-x) called 
synchronization term and the k called 
the coupling factor. By changing the 
coupling factor value gradually the full 
synchronization will obtain. To study 
the secure communications the 
observably program apply, after adding 
message like sinusoidal signal on 
transmitter part in y scale for Lorenz 
equation. This sinusoidal signal 
message is [m (t) =A sin (2πf t)], 
where A and f represent the amplitude 
and frequency of the message signal 
respectively. By this way the chaotic 
signal can be used as the carrier signal 
and this technique called chaos 
masking method. By changing the A 
and f values which can be used to 
study the significant of system in 
carrier signal, where there are 
limitation in A and f values. 

 
Chart (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3: Flow chart (2). 
 

The numerical model results   
     The modeling approach of chaos 
was investigated by programming the 
physical   model as shown in the flow 
chart, where the total simulation time 

chosen depends strongly on the 
magnitude of the temporal scales 
defined by three parameters R, σ and b, 
depending on initial conditions. To 
demonstrate the first property of chaos, 
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i.e. aperiodicity, a numerical 
simulation was done using Berkeley 
Madonna software of ordinary 
differential equations [14]: 

  
These equations in Lorenz model 
describing the fluid motion and heat 
flow.  
where X, Y, and Z are the states of the 
system and σ, R, and b are positive 
parameters (where σ is the Prandtl 
number, R is the Rayliegh number and 
b is a geometric factor), which denote 
physical characteristics of air flow. 
Typical parameter values that yields 
chaotic dynamics are σ= 10, R = 30, 
and b = 8/3= (2.66). For these values, 
the attractor generated by numerically 
integrating Eq. (1). To obtain a 
practical circuit design for the Lorenz 
system, it is necessary to scale the 
system equations. 
The numerical simulation procedure to 
find the time series of x, y, and z coded 
and calculated by the forth order 
Runge –Kutta method. The stochastic 
parameters are σ =10, R=30, and 
b=8/3(2.66), while the initial 
conditions are xint =0.01, yint=0.01, and 
zint=0.01. The observed intensity 
spectra with time for three dynamical 
states are shown in Figs.3, 4, and 5, 
where the states x, y, and z are 
evolving with time periodically.  
     The irregular behavior is also true 
for other variables y and z. The second 
property in   the definition for Lorenz 
system is trivia. The irregular behavior 
in the Lorenz system is arising because 
of the intrinsic non-linearity of the 
system itself rather than the noisy 
parameters. The FFT for these 
dynamical stats are shown in Fig. 6. 

The (FFT) of the chaotic signal has 
exponential decay shape and this is one 
way to distinguish noise from chaotic 
behavior because the (FFT) of noise 
has Gaussian distribution. Another nice 
property of chaos can be seen by 
plotting the variable z versus x of 
Lorenz system by numerically 
integration, see Fig. 7. The Figure 
shape is called the strange attractor, 
showing how x and z evolve against 
time, as well as demonstrating how a 
simple looking deterministic system 
could have extremely erratic dynamics 
where solution oscillate irregularly, 
never exactly repeating but always 
remaining in a bounded region of 
phase space. The strange attractor is 
not a point or a curve or even a 
surface, it is a fractal with a fractional 
dimension between 2 and 3. The same 
behavior, when plot between variable y 
versus x, is shown in Fig. 8. These 
figures explain the butterfly effect of 
the non-linear dynamical system. 
The final diagram that shows the 
scenario of nonlinear dynamic 
behavior of system is bifurcation 
diagram, as shown in Fig. 9. A system 
transition from one type of behavior to 
another depending on the values for 
important parameters like (b) value in 
Lorenz equation. If (b) value is 
changing from 0 to maximum value 
2.7 the amplitude of x scale in time 
series divide in three parts. The first 
one is curve line where b value is 
starting from 0 to 0.6 that called 
regular oscillation. The second part 
called period doubling that is starting 
from 0.6 to 0.8. Finally, the chaos 
behavior region is starting from 1 to 
2.7, where the optimum value to get 
chaotic behavior at 2.7.  

dx/dt ൌ െߪx ൅  yߪ
dy/dt = Rxെy െ x  
dz/dt = െܾz ൅ xy  

(1) 
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Fig. 4: The intensity of x dynamical state as function of time series when σ =10, R=30, and 
b=8/3(2.66) at xint =0.01, yint=0.01, and zint=0.01. 
  

 
 

Fig. 5: The intensity of y dynamical state as function of time series when σ =10, R=30, and 
b=8/3(2.66) at xint =0.01, yint=0.01, and zint=0.01. 

 
 

 

Fig. 6: The intensity of z dynamical state as function of time series when σ =10, R=30, and 
b=8/3(2.66) at xint =0.01, yint=0.01, and zint=0.01. 
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Chaotic signals in secure 
communication systems 
     On might feel that since the signal 
generated from chaotic system 
irregular in nature, therefore, these 
types of signals cannot have any 
practical application and should be 
avoided. However, the properties of 
the chaotic signal can in fact be used in 
different fields of communication 
engineering particularly; spread 
spectrum applications to achieve 
chaotic synchronization, there had to 
be some sort of coupling present 
between the two chaotic systems. If we 
consider unidirectional coupling, then 

a signal from one chaotic (transmitter 
system) is being transmitted to another 
chaotic (receiver system). This is 
analogous to communication systems 
where a carrier signal is modulated by 
a massage signal prior to transmission. 
Therefore, the chaotic signals can be 
used as the carrier signal. Using the 
chaotic masking method; that is one of 
the earlier methods to use chaotic 
signal for transmitting a massage 
signal. In this scheme, a massage 
signal is added i.e., masked to the 
output of a chaotic oscillator at the 
transmitter side prior to transmission, 
as shown in Fig. 14. 

 
   
 

Fig. 14: x vs. x1, of two similar Lorenz system at xint=0.01, x1int=0.03, and k=15 (full 
synchronization). 
 
     In Fig. 15 with information message 
signal m (t) =A sin (2πf), four different 
amplitudes A=1, and 11 are studied, 
whose frequency 0.13, 0.06 Hz, as 
shown in Figs. 15, 17, and 19 
respectively. It is represent the 
transmitted signal, input and output 
sinusoidal signal message, where the 
recovered message signal is (green 
line) and input massage signal (red 
line). Few things are worth mentioning 
regarding the implementation of the 
chaotic communication system which 
will also be helpful in our result. One 
point worth pointing out is, the chaotic 

signals really broadband, since, the 
basic idea was to hide the narrow band 
message spectrum within the wide 
band of chaotic signals, therefore the 
chaotic signals being used as the 
carrier should have a wide spectrum. 
However, the power spectrum (FFT) of 
the output signal from the Lorenz 
oscillator illustrate that the spectrum 
hardly exceeds beyond 4-5Hz as 
shown in Figs. 16, 18, and 20. 
     Therefore a message signal e.g. a 
sinusoidal signal with a frequency of 
5Hz after being masked with that 
chaotic signal will be easily detected 
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